Download presentation
Presentation is loading. Please wait.
Published byAnne Smith Modified over 9 years ago
1
Basis beeldverwerking (8D040) dr. Andrea Fuster Prof.dr. Bart ter Haar Romeny dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Convolution
2
Contents 2 Spatial filtering Correlation Convolution Filters: Smoothing filters Sharpening filters Borders Basis beeldverwerking 8D040
3
Spatial filtering Input image, use a filter to obtain processed image Filter consists of Neighbourhood (rectangular) Mostly odd dimensions Predefined operation Create new pixel value in center of neighbourhood 3 Basis beeldverwerking 8D040
4
Spatial filtering Filter operation More compact notation - filter 4 Basis beeldverwerking 8D040
5
Intuition to filtering 5 Basis beeldverwerking 8D040
6
Move filter over image 6 Basis beeldverwerking 8D040
7
7
8
8
9
9
10
10 Basis beeldverwerking 8D040
11
Correlation While moving the filter, at each position Multiply values of overlapping locations Sum all multiplication results 11 Basis beeldverwerking 8D040
12
Correlation vs. Convolution Discrete Correlation 2D Discrete Convolution 2D 12 Basis beeldverwerking 8D040 - Equivalent to first rotate the filter 180 degrees and correlate-
13
Correlation vs. Convolution With convolution, first mirror the filter kernel with respect to its origin. With correlation, do not mirror the filter kernel with respect to its origin. 13 convolutioncorrelation Basis beeldverwerking 8D040
14
Example See blackboard ☺ (or figure 3.30 Gonzalez and Woods) Basis beeldverwerking 8D040 14
15
Convolution – 1D cont. case Imagine a system with input signal transfer function output signal then 15 Basis beeldverwerking 8D040
16
Definition 16 output input system transfer function Basis beeldverwerking 8D040
17
Dirac delta function (unit impulse) Definition Constraint Sifting property Specifically for t=0 17 Basis beeldverwerking 8D040
18
Convolution Let 18 Basis beeldverwerking 8D040 We saw this already in the discrete case
19
Properties of convolution Commutative Associative Distributive 19 Basis beeldverwerking 8D040
20
Convolution is commutative Proof Let Q.E.D. 20 Basis beeldverwerking 8D040
21
Convolution is associative - 1 Proof 21 Basis beeldverwerking 8D040
22
Convolution is associative - 2 22 Basis beeldverwerking 8D040
23
Convolution is associative - 3 Let 23 Basis beeldverwerking 8D040
24
Convolution is associative - 4 Q.E.D. 24 Basis beeldverwerking 8D040
25
Convolution is distributive - 1 Proof 25 Basis beeldverwerking 8D040
26
Convolution is distributive - 2 Q.E.D. 26 Basis beeldverwerking 8D040
27
Discrete convolution 1D 2D 27 Basis beeldverwerking 8D040
28
Discrete convolution Formulas take summation from to Filters have a limited size, e.g., 1D 2a + 1 2D (2a + 1, 2b + 1) 28 Basis beeldverwerking 8D040
29
Filter Kernels 29 Kernel Basis beeldverwerking 8D040
30
Filters Idea: correlate or convolve image with different filters in order to obtain different results, i.e., processed images Basis beeldverwerking 8D040 30
31
Smoothing filters Average intensities – result is blurred image, less details Response: (z’s image intensities) 31 Basis beeldverwerking 8D040 … NxN filter
32
Smoothing filters Note that: −Sum of filter coefficients is 1 (normalized filter) −Correlation = convolution (symmetric filter) −Filter size effect? Basis beeldverwerking 8D040 32
33
Smoothing filters - example 33 Basis beeldverwerking 8D040 Original 3x3 smoothing filter NxN filter (see figure 3.33 in Gonzalez and Woods!)
34
Effect of normalized smoothing kernel Basis beeldverwerking 8D040 34 normalized non- normalized
35
Sharpening filters Enhance parts of the image where intensities change rapidly, such as edges Basic derivative filters Measure change of intensity in x or y direction 35 Basis beeldverwerking 8D040
36
Example 36 Basis beeldverwerking 8D040
37
Arbitrary angle derivative Given and 37 Basis beeldverwerking 8D040
38
Arbitrary angle derivative 38 Basis beeldverwerking 8D040
39
Prewitt gradient kernel Derivative in one direction, smoothing in the perpendicular direction 39 Basis beeldverwerking 8D040
40
Example 40 Basis beeldverwerking 8D040 25-03-2009 Prewitt Basic derivative
41
Sobel kernel 41 Basis beeldverwerking 8D040
42
Example 42 (Thanks to Wikipedia☺)
43
Derivative filters Note that coefficients in all of the previous filters sum to zero, i.e., zero response in area of constant intensity Also: gradient, Laplacian, … Basis beeldverwerking 8D040 43
44
Borders Do you see any problems at image borders? Try position (0,0) 44 Basis beeldverwerking 8D040
45
Border problems How to handle? No border handling Border is not filtered Padding Put values outside image border Cyclic padding Use values from the other side of the image 45 Basis beeldverwerking 8D040
46
Zero padding 46 Basis beeldverwerking 8D040
47
Cyclic padding 47 Basis beeldverwerking 8D040
48
Padding Remember: padding is artificial! The values chosen outside the border influence the outcome image 48 Basis beeldverwerking 8D040
49
End of part 2 Thanks and see you Wednesday 16! Basis beeldverwerking 8D040 49
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.