Download presentation
Presentation is loading. Please wait.
Published byElijah Newman Modified over 9 years ago
1
Systematization of Crowdsoucing for Data Annotation Aobo, Feb. 2010
2
Outline Overview Related Work Analysis and Classification Recommendation Future work Conclusions Reference
3
Overview Contribution Provide a faceted analysis of existing crowdsourcing annotation applications. Discuss recommendations on how practioners can take advantage of crowdsourcing. Discuss the potential opportunities in this area. Defination Crowdsoucing GWAP Distributed Human-based Computation AMT HIT
4
Retaled Works “A Taxonomy of Distributed Human Computation” Author: J. Quinn and B. Bederson Year: 2009 Contribution Divide the DHC applications into seven genres. Proposed six dimensions to help characterize the different approaches. Propose some recommandation and future directions
5
Related work “A Survey of Human Computation Systems” Author: Yuen, Chen and King Year: 2009 Contribution General survey of various human computation systems separately. Compare the GWAPs based on the game structure, verification method, and game mechanism Present the performance aspect issues of GWAPs.
6
Analysis and Classification Dimensions
7
Analysis and Classification GWAP High score in : GUI desine, Implementation cost, Annotation speed, Low score in : Anonotation cost, Difficulty, Participation time, Domain Coverage, Popularization Medium score in: Annotation accuracy, Data size NLP tasks: - Word Sense Disambiguation - Coreference Annotation
8
Analysis and Classification AMT High score in : Annotation cost Low score in : GUI design, Implementation Cost, Number of Participants, Data size Medium score in: Popularization, Difficulty, Domain coverage, Paticipation time, Popularization Annotation accuracy, NLP tasks: - Parsing - Part-of-Speech Tagging
9
Analysis and Classification Wisdom of Volunteers High score in : Number of Participants, Data size, Difficulty, Paticipation time Low score in : GUI design, Fun Medium score in: Implementation Cost, Annotation accuracy, NLP tasks: - Paraphrasing - Machine Translation task - Summarization
10
Recommendation GWAP Submit the GWAP games to a popular game website which provides and recommend new games for players Uniform game developing platform AMT Make the task fun Rank the employers by their contribuation Award employers who provide original data to be annotated Donate the whole or part of the benefit to an charity Wisdom of Volunteers Rank the users by their contribuation Push the tasks to the public users
11
Conclusions Propose different dimentions of existing crowdsourcing annotation applications. Discuss recommendations on each crowdsourcing approach Discuss the potential opportunities in this area
12
Reference 1.Benjamin B. Bederson Alexander J. Quinn. 2009. A taxonomy of distributed human computation. 2.Aniket Kittur, Ed H. Chi, and Bongwon Suh. 2008. Crowdsourcing user studies with mechanical turk. 3.Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Ng. 2008. Cheap and fast – but is it good? evaluating non-expert annotations for natural language tasks. 4.A. Sorokin and D. Forsyth. 2008. Utility data annotation with amazon mechanical turk. 5.Luis von Ahn and Laura Dabbish. 2008a. Designing games with a purpose. Commun. ACM, 51(8):58– 67, August. 6.Luis von Ahn and Laura Dabbish. 2008b. General techniques for designing games with a purpose. Commun. ACM, 51(8):58–67. 7.Man-Ching Yuen, Ling-Jyh Chen, and Irwin King. 2009. A survey of human computation systems. Computational Science and Engineering, IEEE International Conference on, 4:723–728.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.