Download presentation
Presentation is loading. Please wait.
Published byLesley Parker Modified over 9 years ago
1
By: Anthony Beeman
2
P L P v v P N A M x y Euler’s Fundamental Buckling Problem Assumptions: Straight Column Homogeneous Material Boundary Conditions: Pinned-Pinned Governing Equations: n=mode L= Original Column Length E= Young’s Modulus I= Moment of Inertia
3
P L e =L x y P L e =2L L P P Other End Conditions Modified Euler Buckling Formula: L= Original Column Length L e = Effective Column Length E= Young’s Modulus I= Moment of Inertia
4
P L=10 M AA Cross Section A-A r=0.5 M VariableValueDescription ρ [kg/m 3 ]7800Density υ [Dim]0.3Poisson's ratio E [Pa]2e11Young's Modulus Mechanical Properties Calculated Critical Load Problem Analyzed [N]
5
Case Number Analytical Critical Load [N] Theoretical Critical Load [N] Percent Error [%] Case 12.422e8 0.00% Case 22.414e82.422e80.33% Case 32.410e82.422e80.49% Case 1 2,904 DOF Case 2 12,723 DOF Case 3 73,623 DOF
6
Case 1 285 DOF Case 2 490 DOF Case 3 48,145 DOF Case Number Analytical Critical Load [N] Theoretical Critical Load [N] Percent Error [%] Case 13.102e82.422e82.86 Case 22.851e82.422e81.82 Case 32.447e82.422e81.52
8
Case 1 2,904 DOF Case 2 12,723 DOF Case 3 73,623 DOF Case Number Analytical Critical Load [N] Theoretical Critical Load [N] Percent Error [%] Case 12.406e82.422e80.16 Case 22.406e82.422e80.16 Case 32.406e82.422e80.16
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.