Download presentation
Presentation is loading. Please wait.
Published byEdith Newman Modified over 9 years ago
1
PROTEIN PHYSICS LECTURE 8
2
THERMODYNAMISC& STATISTICAL PHYSICS
3
WHAT IS “TEMPERATURE”? EXPERIMENTAL DEFINITION : = t, o C + 273.16 o EXPERIMENTAL DEFINITION
4
THEORYClosedsystem:energy E = const CONSIDER: 1 state of “small part” with & all states of thermostat with E- . M(E- ) = 1 M th (E- ) S t (E- ) = k ln[M t (E- )] S t (E) - (dS t /dE)| E M t (E- ) = exp[S t (E)/k] exp[- (dS t /dE)| E /k] WHAT IS “TEMPERATURE”? S ~ ln[M]
5
All-system’s states with E have equal probabilities For “small part’s” state: depends on COMPARE: Probability 1 ( 1 ) = M t (E- 1 ) / E’ M(E’) ~ exp[S t (E)/k] exp[- 1 (dS t /dE)| E /k] exp[S t (E)/k] exp[- 1 (dS t /dE)| E /k]and Probability 1 ( 1 ) ~ exp(- 1 /k B T) (BOLTZMANN) One has: (dS t /dE)| E = 1/ T k = k B ______________________________________________________________ -k B T, M M exp(1) M 2.72
6
(dS th /dE) = 1/ T P 1 ( 1 ) ~ exp(- 1 /k B T) P j ( j ) = exp(- j /k B T)/Z(T); j P j ( j ) 1 Z(T) = i exp(- i /k B T) partition function СТАТИСТИЧЕСКАЯ СУММА СТАТИСТИЧЕСКАЯ СУММА
7
Unstable (explodes, V → ): Unstable (fells): stable unstable Along tangent: S-S(E 1 ) = (E-E 1 )/ T 1 i.e., F = E - T 1 S = const (= F 1 = E 1 - T 1 S 1 ) i.e., F = E - T 1 S = const (= F 1 = E 1 - T 1 S 1 )
8
Separation of potential energy in classic (non-quantum) mechanics: P( ) ~ exp(- /k B T) Classic: = COORD + KIN KIN = mv 2 /2 : does not depend on coordinates Potential energy COORD : depends only on coordinates P( ) ~ exp(- COORD /k B T) exp(- KIN /k B T) Z(T) = Z COORD (T)Z KIN (T) F(T) = F COORD (T)+F KIN (T) ======================================================================================================================== Elementary volume: (mv) x = ħ ( x) 3 =(ħ/|mv|) 3
9
IN THERMAL EQUILIBRIUM: T COORD = T KIN = T We may consider further only potential energy: E E COORD M M COORD S(E) S COORD (E COORD ) F(E) F COORD, etc.
10
TRANSITIONS:THERMODYNAMICS
11
gradual transition “all-or-none” (or first order) phase transition coexistence & jump coexistence ( T/T * )( E/kT * ) ~ 1
12
“all-or-none” (or first order) phase transition F(T 1 )
13
Second order phase transition change Not observed in proteins up to now: they are too small
14
TRANSITIONS:KINETICS
15
n # = n exp(- F # /k B T) n#n#n#n# n TRANSITION TIME: t 0 1 = t 0 #1 = = # (n/n # ) = # exp(+ F # /k B T) = # (n/n # ) = # exp(+ F # /k B T)
16
PARALLEL REACTIONS: TRANSITION RATE = SUM OF RATES (or: the highest rate) (or: the highest rate) RATE = 1/ TIME
17
CONSECUTIVE REACTIONS: TRANSITION TIME SUM OF TIMES t 0 … finish = t 0 #1 finish + t 0 #2 finish + … # # startfinish _
18
_ _ TRANSITION TIME IS ESSENTIALLY EQUAL FOR “TRAPS” AT AND OUT OF PATHWAYS OF CONSECUTIVE REACTIONS: TRANSITION TIME SUM OF TIMES (or: the longest time) (or: the longest time) # main finishfinishstart start “trap”: on “trap”: out # main
19
DIFFUSION:KINETICS
20
Mean kinetic energy of a particle: mv 2 /2 ~ k B T = j P j ( j ) j v 2 = (v X 2 )+(v Y 2 )+(v Z 2 ) Maxwell:
21
Friction stops a molecule within picoseconds: m(dv/dt) = -(3 D )v [Stokes law] D – diameter; m ~ D 3 – mass; – viscosity t kinet 10 -13 sec (D/nm) 2 in water During t kinet the molecule moves somewhere by L kinet ~ vt kinet Then it restores its kinetic energy mv 2 /2 ~ k B T from thermal kicks of other molecules, and moves in another random side CHARACTERISTIC DIFFUSION TIME: nanoseconds
22
Friction stops a molecule within picoseconds: t kinet 10 -13 sec (D/nm) 2 in water During t kinet the molecule moves somewhere by L kinet ~ vt kinet Then it restores its kinetic energy mv 2 /2 ~ k B T from thermal kicks of other molecules, and moves in another random side CHARACTERISTIC DIFFUSION TIME: nanoseconds The random walk allows the molecule to diffuse at distance D (~ its diameter) within ~(D/L kinet ) 2 steps, i.e., within t difft t kinet (D/L kinet ) 2 410 -10 sec (D/nm) 3 in water
24
For “small part”: P j ( j ) = exp(- j /k B T)/Z(T); Z(T) = j exp(- j /k B T) Z(T) = j exp(- j /k B T) j P j ( j ) = 1 j P j ( j ) = 1 E(T) = = j j P j ( j ) if all j = : # STATES = 1/P, i.e.: S(T) = k B ln(1/P) if all j = : # STATES = 1/P, i.e.: S(T) = k B ln(1/P) S(T) = k B = k B j ln[1/P j ( j )] P j ( j ) F(T) = E(T) - TS(T) = -k B T ln[ Z(T)] STATISTICAL MECHANICS
25
Thermostat: T th = dE th /dS th “Small part”: P j ( j,T th ) ~ exp(- j /k B T th ); E(T th ) = j j P j ( j,T th ) E(T th ) = j j P j ( j,T th ) S(T th ) = k B j ln[1/P j ( j,T th )] P j ( j,T th ) S(T th ) = k B j ln[1/P j ( j,T th )] P j ( j,T th ) T small_part = dE(T th )/dS(T th ) = T th STATISTICALMECHANICS
26
Along tangent: S-S(E 1 ) = (E-E 1 )/ T 1 i.e., i.e., F = E - T 1 S = const (= F 1 = E 1 - T 1 S 1 ) F = E - T 1 S = const (= F 1 = E 1 - T 1 S 1 )
27
Separation of potential energy in classic (non-quantum) mechanics: P( ) ~ exp(- /k B T) Classic: = COORD + KIN KIN = mv 2 /2 : does not depend on coordinates Potential energy COORD : depends only on coordinates P( ) ~ exp(- COORD /k B T) exp(- KIN /k B T) Z KIN (T) = K exp (- K /k B T): don’t depend on coord. Z COORD (T) = C exp (- C /k B T): depends on coord. Z(T) = Z COORD (T)Z KIN (T) F(T) = F COORD (T)+F KIN (T) ======================================================================================================================== Elementary volume: (mv) x = ħ ( x) 3 =(ħ/|mv|) 3
28
P( KIN + COORD ) ~ exp(- COORD /k B T)exp(- KIN /k B T) P( COORD ) = exp(- COORD /k B T) / Z COORD (T) Z COORD (T) = C exp (- C /k B T): depends ONLY on coordinates on coordinates P( KIN ) = exp(- KIN /k B T) / Z KIN (T) Z KIN (T) = K exp (- K /k B T): don’t depend on coord. T<0: unstable (explodes) at T at T<0 due to P( KIN ) ~ exp(- KIN /k B T)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.