Download presentation
Presentation is loading. Please wait.
Published byKristopher Bailey Modified over 9 years ago
1
P. Wittich 1 Peter Wittich University of PA March 1, 2002 From Solar Neutrinos to B Physics: Flavor Oscillations at SNO and CDF
2
P. Wittich 2 SNOCDF Goals Solar problem Many (B physics is small part) Beam Divine (solar) e Tevatron ppbar Detection Medium Heavy waterSi, ArC 2 H 6, Scintillator, … Channels~10 4 ~10 6 Energies4-15 MeV~ 10 GeV Event rate10 Hz7.6 MHz S/N10 events/dayDepends… PhysicsFlavor oscillations At the base, the same physics! What ties these two experiments together?
3
P. Wittich 3 Flavor Oscillations Wolfenstein: CKM PDG “standard”: MNS
4
P. Wittich 4 Solar Neutrino Problem Bahcall Most plausible solution: flavor oscillations in ’s
5
P. Wittich 5 SNO Detector 1 kT virgin D 2 O ~ 10,000 PMTs on 16.8 m support (LBL!) 7 kT H 2 O, ultrapure Penn Electronics Control Room Urylon liner 2039 m underground 1 in Sudbury, Ontario, in INCO's Creighton Mine #9 1 6000 mwe
6
P. Wittich 6 S. Gil, J. Heise, R.L. Helmer, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng, Y.I. Tserkovnyak, C.E. Waltham University of British Columbia J. Boger, R.L. Hahn, J.K. Rowley, M. Yeh Brookhaven National Laboratory R.C. Allen, G. Bühler, H.H. Chen* University of California at Irvine I. Blevis, F. Dalnoki-Veress, J. Farine, D.R. Grant, C.K. Hargrove, I. Levine, K. McFarlane, H. Mes, C. Mifflin, A.J. Noble, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, M. Starinsky Carleton University G. Milton, B. Sur Chalk River Laboratories T.C. Andersen, K. Cameron, M.C. Chon, P. Jagam, J. Karn, J. Law, I.T. Lawson, R.W. Ollerhead, J.J. Simpson, N. Tagg, J.-X. Wang Univeristy of Guelph J. Bigu, J.H.M. Cowan, E.D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, S. Luoma, A. Roberge, E. Saettler, M.H. Schwendener, H. Seifert,R. Tafirout, C.J. Virtue Laurentian University Y.D. Chan, X. Chen, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon, A. Schuelke, A.R. Smith, R.G. Stokstad Lawrence Berkeley National Lab T.J. Bowles, S.J. Brice, M.R. Dragowsky, M.M. Fowler, A. Goldschmidt, A. Hamer, A. Hime, K. Kirch, G.G. Miller, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory J.D. Anglin, M. Bercovitch, W.F. Davidson, R.S. Storey* National Research Council of Canada J.C. Barton, S. Biller, R.A. Black, R.J. Boardman, M.G. Bowler, J. Cameron, B. Cleveland, X. Dai, G. Doucas, J. Dunmore, H. Fergani, A.P. Ferraris, K. Frame, H. Heron, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, N. McCauley, G. McGregor, M. Moorhead, M. Omori, N.W. Tanner, R.K. Taplin, P. Thornewell,M. Thorman, P.T. Trent, D.L. Wark, N. West, J. Wilson University of Oxford E.W. Beier, D.F. Cowen, E.D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J.R. Klein, C.C.M. Kyba, D.S. McDonald, M.S. Neubauer, F.M. Newcomer, S.M. Oser, V.L. Rusu, R.G. Van de Water,R. Van Berg, P. Wittich University of Pennsylvania R. Kouzes, M.M. Lowry Princeton University E.Bonvin, M.G. Boulay, Y. Dai, M. Chen, E.T.H. Clifford,, F.A. Duncan, E.D. Earle,H.C. Evans, G.T. Ewan, R.J. Ford, A.L. Hallin, P.J. Harvey, R. Heaton, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, A.B. MacDonald,W. McLatchie, B.A. Moffat, B.C. Robertson, T.J. Radcliffe, P. Skensved Queen's University Q.R. Ahmad, M.C. Browne, T.V. Bullard, T.H. Burritt, G.A. Cox, P.J. Doe,C.A. Duba, S.R. Elliott, J.V. Germani, A.A. Hamian, R. Hazama, K.M. Heeger, M. Howe, R. MeijerDrees, J.L. Orrell, R.G.H. Robertson,K.K. Schaffer, M.W.E. Smith, T.D. Steiger, J.F. Wilkerson University of Washington *Deceased SNO Collaboration
7
P. Wittich 7 In matter: Neutrino oscillations Recall (vacuum, two family): L/E determines experimental sensitivity. Typical L/E (L:m, E: MeV) Mixing angle 10 19 -10 20 Supernova 10 10 -10 11 Solar 10 2 -10 4 Atmos. 10 0 -10 2 Reactor 10 -2 - 10 1 Accl.
8
P. Wittich 8 SNO reactions -Good measurement of e energy spectrum -Weak directional sensitivity 1-1/3cos -Measure total 8 B flux from the sun. -Low Statistics -Strong directional sensitivity All types but enhanced sensitivity to e NC x x npd ES -- eνeν xx CC - eppd e e only Equal cross section for all types Smoking Gun, model independent Significant with SuperK
9
P. Wittich 9 SNO Run Sequence Pure D 2 O –Good CC sensitivity Added Salt in D 2 O –Enhanced NC sensitivity Neutral Current Detectors – 3 He proportional counters in the D 2 O Neutron Detection Method Capture on D Capture on Cl Capture on 3 He Event-by-event separation of CC and NC events n 3 He p t n 35 Cl 36 Cl … e (E = 8.6 MeV) n d t … e (E = 6.3 MeV) The Three Phases 1 2 3
10
P. Wittich 10 NC Salt (BP98) Signals in SNO SNO MC assuming BP98 solar model (no oscillations) Counts in D 2 O/year/hit pmt Hit PMT’s (~E e )
11
P. Wittich 11 SNO: Handles ES CC Charged current energy response leads to good sensitivity to spectral distortions. ES: e washed out (SK) CC: need lots of statistics (>>1year) NC background to CC spectrum Charged current energy response leads to good sensitivity to spectral distortions. ES: e washed out (SK) CC: need lots of statistics (>>1year) NC background to CC spectrum SNO GOAL:CC/NC ratio is a direct signature for oscillations. ES: SK, SNO In addition:
12
P. Wittich 12 Neutrino Candidate
13
P. Wittich 13 SNO Results from Phase 1: Analysis outline Calibration Data reduction Final Fit Physics results: CC flux (CC/ES ratio) More soon: Day/night, NC in D 2 O
14
P. Wittich 14 Extracting Signals in Phase 1 Three signals, three handles Energy Distribution Radial Distribution Solar Direction Distribution Extended maximum likelihood fits amplitudes
15
P. Wittich 15 SNO result: CC flux NB: SNO CC flux < SNO ES flux (1.6 ). Also, SNO CC < SK ES (3.3 ) SNP: e Ratio of CC to BPB01 = 0.347 ± 0.029 Ratio of CC to BPB01 = 0.347 ± 0.029 SNO measurements: CC ( 8 B) = 1.75 ± 0.07 ± 0.05 (stat) (sys.) (theor) ES ( 8 B) = 2.39 ± 0.34 (stat) (sys.) +0.12 - 0.11 +0.16 - 0.14 (Units of 10 6 /cm 2 /sec)
16
P. Wittich 16 Implications: SNO Results To Active NeutrinosTo Sterile Neutrinos sterile neutrino solutions strongly disfavored
17
P. Wittich 17 Solar (SuperK ES, SNO CC) m 2 ~ 10 -4 - 10 -12 eV 2 sin 2 2 - LMA large CC SNO /ES SK 3.3. Neutrino oscillations: evidence roundup Atmospheric (SuperK) m 2 ~ 310 -3 eV 2 sin 2 2 ~ 1 Oscillation to s disfavored at 99%CL Atmospheric (SuperK) m 2 ~ 310 -3 eV 2 sin 2 2 ~ 1 Oscillation to s disfavored at 99%CL LSND m 2 ~ 1 eV 2 Sterile? ( )
18
P. Wittich 18 What’s next for ’s Minos - sensitive to atmospheric KamLand - sensitive to solar LMA miniBoone - address LSND Minos - sensitive to atmospheric KamLand - sensitive to solar LMA miniBoone - address LSND Further off… CP violation in MNS? –Longer ways away… What about 13 ? Address extra-terrestrial evidence with terrestrial experiments…. Solar neutrinos SNO NC/CC in D2O, day/night Borexino 7 Be
19
P. Wittich 19 Minos Sensitivity Study 23 (atmospheric nu’s) 10 kT-years exposure Null hypothesis (no osc.) NUMI public pages
20
P. Wittich 20 Kamland From Kamland-US proposal. Solar LMA in reach Reactor with very long baseline (Solar too…)
21
P. Wittich 21 MiniBooNE Sensitivity to LSND preliminary In two years, MiniBooNe can exclude the LSND region. Start taking data this year
22
P. Wittich 22 Borexino Measure 7 Be solar nu’s Esp. sensitive to SMA Data taking 5/2002 Borexino public pages
23
P. Wittich 23 Silicon tracker Time-of-Flight Drift chamber Plug calorimeter Muon systems Solenoid Central calorimeter CDF II Substantial upgrades from Run I detector, of relevance for B physics
24
P. Wittich 24 Oscillation in Quarks CKM describes quark mixing Also sensitive to ‘new physics’ What can you do at CDF (since we have B factories)? Access to other modes, such as B s High bbar (ppbar)~ 100 b This comes at considerable cost… Disadvantages: –High backgrounds, coupled with low branching fractions, make interesting data hard to trigger on Need an effective B trigger. –CDF D 2 low compared to B factories ( ~11% Run II estimate, rather than ~26% at BaBar) –Better particle ID CDF’s B program complementary
25
P. Wittich 25 m s : motivation By measuring m s, we can get at V td: s ss s Information about one side of triangle.
26
P. Wittich 26 How to measure m s Oscillation probability: Determine the oscillation as a function of proper decay time:
27
P. Wittich 27 How to measure m s, cont’d 1.Find decay into favorite mode 2.Determine meson type at creation 3.Measure proper decay length 4.Count oscillated vs non-oscillated as f(t) Flavor tagging
28
P. Wittich 28 Sensitivity accurate estimate of decay length crucial For CDF, D 2 small (~5% Run I, ~11% Run II exp.) Need large statistics (and/or good trigger) Effect: ND 2 N fully reconstructed modes: p negligible
29
P. Wittich 29 For fast oscillations: –Proper time resolution –Dilution –Momentum resolution Fully reconstructed modes m s sensitivity: what matters? Run I study for partially reconstructed mode:
30
P. Wittich 30 In Run II, CDF triggers on displaced tracks in trigger: exploit long B lifetimes. Ideal for enriched hadronic B samples –(cf Run I) It works! CDF II: SVT trigger
31
P. Wittich 31 SVT, continued Reconstructed with quantities available in the trigger To do: SVX coverage L00 SVT optimization
32
P. Wittich 32 SVX performance
33
P. Wittich 33 Flavor Tagging Determine the initial flavor of the B 0 s Opposite side tags Same side tags - TOF new to RunII SLT: 1.7% JetQ: 3.0% OSK: 2.4% (RunII est) Run I
34
P. Wittich 34 Tagging w/TOF: SSK TOF: 2 K/ separation for p < 1.6 GeV With COT dE/dx, stat separation K vs ? 1.0% 4.2% with TOF
35
P. Wittich 35 Some numbers: estimated B s yield Br(B 0 s D + s + )= 3 x 10 -3 Br(D + s + )x Br(K + K - )=1.8% Therefore, the total usable Bf Bf tot ~5.4 x 10 -6. (B 0 s ) ~ 20 b a Bf tot (B 0 s ) ~ 5 pb -1. Assuming full coverage, perfect reco, …, 5 B s decays to tape per pb -1
36
P. Wittich 36 Shutdown Delivered To tape Run II so far L ~ 1.0 x 10 31 sec -1 at beginning of store. FNAL BD: 50pb -1 delivered by Summer 2002 CDF efficiency still needs work… Not a lot of B s to tape yet Jul Oct Jan
37
P. Wittich 37 Reach for Run II: 50 pb -1 and 2 fb -1 For Run IIa (2 fb -1 ): Expect ~ 10,000 B s decays For Summer 2002: 50 pb -1 Expect ~250 B s on tape Even this is a bit optimistic … Time well spent tuning detector and analysis…
38
P. Wittich 38 Current Status: Getting ready B lifetime study: precursor Study of detector resolution (cf. Run I)
39
P. Wittich 39 CKMMNS MixingOnsetGoal Approximate form Masses~hierarchicalFlat? Phases1 in SMMarjorana? Dirac? CP violationEstablishedUnknown In Summary: MNS vs CKM Lots to do in both fields in the near future…
40
P. Wittich 40 SNO calibrations Electronics Calibration q, t pedestals, discriminator walks & thresholds, TAC slopes Optical Calibration Pulsed laser ~2ns (337, 365, 386, 420, 500 and 620 nm) Attenuation, Reflection, Scattering, PMT relative QE Energy Calibration 16 N 6.13 MeV (also good for pointing) p,T 19.8 MeV ’s (high E calibration point) neutrons 6.25 MeV (NC response - bkgnd CC) 8 Li spectrum (CC also good for vertexing) Low Energy Backgrounds Encapsulated Th and U sources
41
P. Wittich 41 SNO:Data Reduction The problem: S/N ~ 1/10 6. Few handles: shape, time structure of Cerenkov light Instrumental can mimic Radioactivity does mimic Other physics –NC to CC and vice versa –Muons, even at 2km!
42
P. Wittich 42 Note Neck Tubes Fired Electronic Pickup Instrumental Backgrounds
43
P. Wittich 43 Signal Distributions Signal Distributions Radial DistributionSolar Direction Distribution
44
P. Wittich 44 Error Source Energy scale Energy resolution Non-linearity Vertex shift Vertex resolution Angular resolution High Energy ’s Low energy background Instrumental background Trigger efficiency Live time Cut acceptance Earth orbit eccentricity 17 O, 18 O Experimental uncertainty Cross-section Solar Model ES error (%) -3.5, +5.4 ±0.3 ±0.4 ±3.3 ±0.4 ±2.2 -1.8, +0.0 0.0 -0.5, +0.0 0.0 ±0.1 -0.6, +0.7 ±0.2 0.0 -5.7, +6.8 3.0 -16, +20 CC error (%) -5.2, +6.1 ±0.5 ±3.1 ±0.7 ±0.5 -0.3, +0.0 0.0 -0.2, +0.0 0.0 ±0.1 -0.6, +0.7 ±0.2 0.0 -6.2, +7.0 3.0 -16, +20 Signal Extraction Systematic Uncertainties From varying pdfs by MC vs. calibration differences
45
P. Wittich 45 What about other physics? Atmospheric ’s: mixing to active flavors established by SuperK at 10. LSND - sterile neutrinos suggested, disfavored by solar and atmospheric data - miniBoone 0test for Majorana masses Current direct mass limits Recent controversial claims of evidence…
46
P. Wittich 46 hep-ph/0201231 0
47
P. Wittich 47 Current limits in plane hep-ph/0201071 K from Kaons m d : B 0 osc V ub, V cb from other B decays Babar, Belle m s : limits only…
48
P. Wittich 48 Current limits on m s As published by the B Oscillation Working Group.
49
P. Wittich 49 Current limits on m s LEPBOSC results from CKM workshop 2/2002
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.