Presentation is loading. Please wait.

Presentation is loading. Please wait.

TeV Particle Astrophysics II 1 Are there EHE signals? Shigeru Yoshida.

Similar presentations


Presentation on theme: "TeV Particle Astrophysics II 1 Are there EHE signals? Shigeru Yoshida."— Presentation transcript:

1 TeV Particle Astrophysics II 1 Are there EHE signals? Shigeru Yoshida

2 TeV Particle Astrophysics II 2 Outline EHE CR fluxes – What’s going on? Revisit EHE particles models A different approach – Neutrinos! GZK + 100 GeV  ?

3 TeV Particle Astrophysics II 3 EHE CR fluxes Compiled by S.Yoshida for ICRC 2005 Taken from B.M.Connolly et al 2006

4 TeV Particle Astrophysics II 4

5 5 Energy estimation AGASA(SD) R core 600~1000m HiRes(FD) R core < R moliere ~70m Even if detector calibration is perfect… FD SD

6 TeV Particle Astrophysics II 6 Hybrid – SD+FD P.Sommers for Auger collab. (ICRC 2005) FD-SD Correlation exists! ABSOLUTE value of Energy ?? Fluctuation plays a visible role in the end

7 TeV Particle Astrophysics II 7 Really discrepancy? B.M. Connolly et al PRD 2006 Poor Stats --- N(>100EeV) ~ only 11 events Energy Uncertainty ---  E scale ~ 30% Bayes Factor Test BF using AGASA and Auger Spectrum BF using AGASA and HiRes1 Spectrum data MC from a single hypothesis

8 TeV Particle Astrophysics II 8 Physics may be responsible EGMF complicates particle trajectories Source distribution may not be isotropic Fluctuation in the spectra and intensities of the source - “cosmic variance”

9 TeV Particle Astrophysics II 9 Propagation in EGMF Sigl, Lemoine, Biermann, Astropart.Phys. 1999 Delay time [yr] Energy [EeV] 0.3  G pancake E -1/3 E -1 (bohm diffusion) E -2 (rectilinear)

10 TeV Particle Astrophysics II 10 Propagation in EGMF Delay time [yr] Energy [EeV] More detailed EGMF model following Large Scale Structure Sigl, Miniati, En  elin, PRD 2004

11 TeV Particle Astrophysics II 11 Spectrum fluctuated! B 100 nG Sigl, Lemoine, Biermann, Astropart.Phys. 1999

12 TeV Particle Astrophysics II 12 Spectrum fluctuated! B 300 nG! More pronounced GZK feature Sigl, Lemoine, Biermann, Astropart.Phys. 1999

13 TeV Particle Astrophysics II 13 Astrophysical sources in Large Scale Structures Sigl, Miniati, En  elin, PRD 2004 EGMF Baryon Density = Source Density uG nG Observer 20Mpc

14 TeV Particle Astrophysics II 14 Astrophysical sources in Large Scale Structures Sigl, Miniati, En  elin, PRD 2004 EHE Sky map

15 TeV Particle Astrophysics II 15 Astrophysical sources in Large Scale Structures With EGMF ~ uG Without EGMF Armengaud, Sigl, Miniati,PRD 2005 Intrinsic fluctuation due to source intensities primary spectrum source density observer’s location in LSS

16 TeV Particle Astrophysics II 16 “Favored” Scenario Source density 2.4x10 -5 Mpc -3 Need LSS? Yes Observer’s location Void Mean spectral index -2.4 B at the observer 8.2 pG So Many Unknown Parameters to fit poor data…. But allows many OTHER possibilities…. 

17 TeV Particle Astrophysics II 17 Top Down model never dies Beyond the Standard Model Top-Down neutrinos decays/interaction of massive particles (topological defects, SUSY, micro black hole, …) The main energy range: E ~ 10 11-15 GeV X

18 TeV Particle Astrophysics II 18 Top Down model never dies  suppressed by (unknown) URB Cut-off feature Sigl, Lee, Bhattacharjee, Yoshida, PRD 1999

19 TeV Particle Astrophysics II 19 Top Down model never dies Sigl, Lee, Bhattacharjee, Yoshida, PRD 1999 A bunch of Recycling  in 100 GeV region

20 TeV Particle Astrophysics II 20 (EHE) Photons in EBL EM cascades lead to the diffuse  -ray BG in the GeV range URB CMB IR/O Transparent Energy Conservation

21 TeV Particle Astrophysics II 21 EHE astrophysics “Everything is transient” “Nothing is certain”  Unknown EGMF strength  Unknown EGMF configuration  Unknown location of us relative to EGMF halo  Unknown source spectra  Unknown source distribution  Unknown source intensity  Large energy scale uncertainty  Extremely low flux  May or may not have a GZK cutoff

22 TeV Particle Astrophysics II 22 Neutrinos – The Last Crusader Forget about EGMF stuff Propagate cosmological distances – no local effects EHE  -rays ? - It depends on unknown URB!

23 TeV Particle Astrophysics II 23 GZK The standard scenario The standard scenario EHE cosmic-ray induced neutrinos The main energy range: E ~ 10 9-10 GeV EHE-CR  e   

24 TeV Particle Astrophysics II 24 GZK Yoshida, Teshima, Prog.Theo.Phys. 1993

25 TeV Particle Astrophysics II 25 GZK – it’s robust Compiled by A. Ishihara Yoshida, Teshima. 1993 Engel, Seckel, Stanev 2001

26 TeV Particle Astrophysics II 26 GZK – parameter dependences Yoshida, Teshima, Prog.Theo.Phys. 1993 Kalashev et al PRD 2002 E max, E -   J(E>10 EeV) m, Zmax  J(E<1EeV)

27 TeV Particle Astrophysics II 27 GZK – Strong Evolution case Yoshida, Dai, Jui, Sommers ApJ 1997 Hard primary proton spectrum + strong evolution of sources Unlikely case, but Flux >> Waxman.Bahcall GeV diffuse  OK with EGRAT Reachable even by present detectors.

28 TeV Particle Astrophysics II 28 UHE/EHE fluxes GZK (hard, high Emax) - Kalashev et al 2002 GZK (strong evolution) - ibid GZK (standard) - Yoshida Teshima 1993 TD - Sigl et al 1999 Zburst – Yoshida et al 1998

29 TeV Particle Astrophysics II 29 ANITA constraints Barwick et al PRL 2006 (projected) Bound from the 2003 flight. Ruled out Z-burst

30 TeV Particle Astrophysics II 30 IceCube constraints Yoshida, Ishibashi, Miyamoto, PRD 2004 ~5 yr constraints Look for downgoing or horizontal events.

31 TeV Particle Astrophysics II 31 IceCube EHE 100 TeV 9 EeV

32 TeV Particle Astrophysics II 32 IceCube EHE IceCube Preliminary GZK  0.35 events/year GZK  0.31 events/year Atmospheric  0.033 events/year GZK  GZK  Atmospheric  GZK  GZK  Atmospheric  A.Ishihara, S.Yoshida for the IceCube collaboration

33 TeV Particle Astrophysics II 33 EHE Neutrinos + 100GeV  -ray channel have its own drawback low statistics, poor pointing resolutions…  channel compensates Arrival direction Local UHECR source  VHE  (Ferrigno,Blasi,Marco, Astro.Phys.2005) (Gabici, Aharonian, PRL 2006)

34 TeV Particle Astrophysics II 34 (EHE) Photons in EBL URB CMB IR/O Transparent Energy Conservation Cooling down to 100 GeV

35 TeV Particle Astrophysics II 35 A “point” source contribution to the diffuse flux Diffuse FluxFlux from A source Source density Zmax ~4 m~4 Z~2 (cosmological distances) “R -2 ”

36 TeV Particle Astrophysics II 36 ICTs for point sources? Taken from W. Hofman 2006  = 2x10 -7 Mpc -3  = 2x10 -9 Mpc -3 Note: AGASA clusters   local ~10 -4 ~10 -5 Too few as UHRCR sources

37 TeV Particle Astrophysics II 37 A “multi-particle” campaign I would like a Munich beer.. Helles ? What are the right ascension/ declination?

38 TeV Particle Astrophysics II 38 Summary  EHE signals are Extremely High Epicurean money/time (your career) consuming to explore  Hard to interpret data. Large Scale Structure?  ~ 10 -5 Mpc -3 ?  Neutrino may be a rescue Top Down model produces easily-reachable signals. GZK detection is a probe to cosmological sources. -- Anita, Auger (>10EeV) IceCube (100 PeV-EeV)  Search for 100 GeV  ’s with ICTs is worth to try


Download ppt "TeV Particle Astrophysics II 1 Are there EHE signals? Shigeru Yoshida."

Similar presentations


Ads by Google