Presentation is loading. Please wait.

Presentation is loading. Please wait.

(Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton.

Similar presentations


Presentation on theme: "(Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton."— Presentation transcript:

1 (Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton

2 Massive Black Holes in AGN  Ubiquitous in normal galaxies (not dwarfs)  Hole mass related to mass of bulge and velocity dispersion  Most local black holes are dormant  When fueled through an accretion disk L~10 44 (M/10 24 gs -1 ) erg s -1 for L< L Edd ~ 10 44 M 6 erg s -1  M~1.5x10 11 M 6 cm~5M 6 s  Innermost Stable Circular Orbit KIAA2 xi 2010 Lauer et al 2007 2

3 AGN Stars  Stellar dynamical mass  Sgr A* (Ghez, Genzel) 10 6.6 M o ; ~100 OB stars (6Myr) S2: 15 yr, e~0.87, r min ~10 15.3 cm~ 3000m~70 r tid Disk distributions?? Invisible stars?  Tidal disruption (Komossa) X-ray flares Fall back emission Fe line reverberation 2 xi 2010KIAA3

4 Tests of Relativity  Orbital dynamics  Apsidal motion  LT precession  Disk crossings 2 xi 2010KIAA [Dai, Fuerst, RB] 4

5 RE J1034+396 z=0.042 Seyfert galaxy L bol ~ 10 44.7 erg s -1 FUV-SX XMM-Newton observations 1 hr QPO in ~1 d observing Best example to date in AGN of a phenomenon quite common in stellar XRB ~ 16 overall but much higher for section of data ~7% sinusoidal profile Interpreted as diskoseismic mode Could it be an EMRI mass transfer binary? Planetars??? 2 xi 2010KIAA5

6 Close Binary Stars 2 xi 2010KIAA  Cataclysmic variables WD + “red” star ~2000 P>80min  Low Mass X-ray Binaries BH/NS + lower mass companion ~200 P>11min, L X ~10 36-38 erg s -1  Ultra Compact X-ray Binaries WD+Ns P>5min  Evolve to overflow Roche Lobe through L1 Accretion disk + hot spot Orbits evolve by gravitational, magnetic braking Outbursts due to unstable supply, transfer and burning 6

7 Conservative Mass transfer  Transfer m -> M at constant m+M, J  J ~ mMP 1/3  If M>>m and gravitational radiation wins, dJ/dt~-m 2 M 4/3 P -7/3  If m fills Roche lobe, P~  -1/2 ~m 0.8 =>J~m 1.3 J decreases Orbit expands Period lengthens 2 xi 2010KIAA Stable Mass Transfer 7 cf Hameury et al

8 Relativistic Effects 2 xi 2010KIAA8

9 Relativistic Roche Problem  Riemann -> local tidal tensor.  Evaluate volume within critical equipotential and evaluate r(L1)=0.3m 1/3 P 2/3 R o  (Roche)=90P -2 g cm -3 Good for N, ISCO (all a) Accurate interpolation  Lose mass through L1, L2 2 xi 2010KIAA Roche Potential L1L2 9

10 Pre-Roche evolution  Gravitational radiation dominates Need PPN corrections to torque  Low mass star fills Roche lobe when P=P R =8m 0.8 hr [ => m < 0.1 M o ]  Outside ISCO P > P ISCO ~ M [=>M<3x10 7 Mo]  Time to overflow t R -t=2x10 5 M 6 -2/3 m 1.3 [(P/P R ) 8/3 -1] yr 2 xi 2010KIAA10

11 Stellar Evolution  Differs from close binary case  t dynamical << t transfer << t Kelvin  S[m] will be frozen  Solve: dP/dm=-Gm/4  r 4 dr/dm=1/4  r 2  [S(m),P] => d log <  /d log m =   =2 for convective low mass star 2 xi 2010KIAA dS/dm >=0 11

12 Evolution of solar star 2 xi 2010KIAA12

13 Radius-mass relation for adiabatic stars 2 xi 2010KIAA 0.3 M o  ~ 2 1M o 8M o  ~ M  R~M (1-  )/3 P~M -  /2 R M 13

14 Orbital and stellar evolution 2 xi 2010KIAA Mass transfer rates are quite low, making adiabatic, conservative assumptions 14

15 Period vs mass 2 xi 2010KIAA15

16 Post-Roche Evolution  After mass transfer orbit expands P ~ m -  /2 ~ m -1 for low mass star t-t R =1400M 6 -2/3 m -1 P 8/3 [(P/P R ) 11/3 -1] yr; [~ 5000yr]  Conservative Mass loss dm/dt = (dm/dt) R = -1.3x10 20 M 0.7 P -0.3 g s -1 [~ 10 21 g s -1 ] ~ -m 8.3 eventually till t transfer > t Kelvin  Dynamical complications Holding pattern? Interactions, drag KIAA2 xi 201016

17 Mass transfer  Mass flows from L1 onto relativistic disk forming hotspot  Gas spirals in to r ms before plunging into hole  Inclined orbits are more complex as streams may not self-intersect  Disk flow may have complex gaps and resonances  Hot spot Doppler beams emission  Also spiral shocks, eccentricity 2 xi 2010KIAA17

18 X-ray observations  Maximum efficiency for a ~ m P R ~ P ISCO  Liberal mass loss Angular momentum ->Spin Wind  Equatorial viewing L ~ D 4 D~2? 2 xi 2010KIAA L E a=0.99m 18

19 Observed X-ray emission 2 xi 2010KIAA a=0 a=0.998 i=5 i=30i=45 a=0 a=0.998 i=30 19

20 AGN QPOs: other mechanisms  Passage of star through an accretion disk orbiting a spinning black hole (Zentsova; Nyakshin; Dai, Fuerst & RB) Inclined stellar orbit, apsidal motion, precession Inelastic collisions -> beamed X-ray emission Ray tracing  Star moving through sub-Keplerian disk  Diskoseismic modes Trapped g-modes 2 xi 2010KIAA20

21 Other observations  17 min IR QPO frm SgrA* (Genzel)  12yr period in OJ287?? Binary black holes??? (Lehto & Valtonen)  LISA harbingers Discover incipient EMRI, coalescence Predictable evolution with degree position! Seek electromagnetic signal in phase with ~10 -9 power - eg LSST. 2 xi 2010KIAA21

22 Summary  Observations of quasi-periodic X-ray emission from stars orbiting black holes in AGN is a potential probe of general relativity  RE J1034+396 may not be an example  Reasonable to search AGN X-ray database for QPO’s with P~5-20hr  AGN black holes could have many “planetars” 2 xi 2010KIAA22


Download ppt "(Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton."

Similar presentations


Ads by Google