Presentation is loading. Please wait.

Presentation is loading. Please wait.

Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: Units Index of refraction of a medium equals the ratio.

Similar presentations


Presentation on theme: "Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: Units Index of refraction of a medium equals the ratio."— Presentation transcript:

1 Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: Units Index of refraction of a medium equals the ratio of the speed of light in a vacuum and the speed of light in the medium Formula Units

2 Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: v=f Units m=1 m s s Index of refraction of a medium equals the ratio of the speed of light in a vacuum and the speed of light in the medium Formula Units

3 Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: v=f Units m=1 m s s Index of refraction of a medium equals the ratio of the speed of light in a vacuum and the speed of light in the medium Formula n = c v Units none=m/s m/s

4 Waves and optics formula Snell's law: the product of the index of refraction and the sin of the incident angle equals the product of the index of refraction of the second medium and the sin of the refracted angle n 1 sin  1 = n 2 sin  2 The sin of the critical angle ( Above this incident angle, will reflect, but will not refract ) equals the ratio of the index of refraction in the second medium and the index of refraction of the first medium Sin  c = n 2 n 1

5 Waves and optics formula Snell's law: the product of the index of refraction and the sin of the incident angle equals the product of the index of refraction of the second medium and the sin of the refracted angle n 1 sin  1 = n 2 sin  2 The sin of the critical angle ( Above this incident angle, will reflect, but will not refract ) equals the ratio of the index of refraction in the second medium and the index of refraction of the first medium Sin  c = n 2 n 1

6 Waves and optics formula Snell's law: the product of the index of refraction and the sin of the incident angle equals the product of the index of refraction of the second medium and the sin of the refracted angle n 1 sin  1 = n 2 sin  2 The sin of the critical angle ( Above this incident angle, will reflect, but will not refract ) equals the ratio of the index of refraction in the second medium and the index of refraction of the first medium Sin  c = n 2 n 1

7 Waves and optics formula Formula used for the relationships between image location, object location and the focal length of the lens or mirror 1 + 1 = 1 s i s o f The magnification equals the ration of the image height to the object height or the negative ratio of the image location to the object location M = h i M = - s i h o s o

8 Waves and optics formula Formula used for the relationships between image location, object location and the focal length of the lens or mirror 1 + 1 = 1 s i s o f The magnification equals the ration of the image height to the object height or the negative ratio of the image location to the object location M = h i M = - s i h o s o

9 Waves and Optics Formula The focal length equals the radius of curvature divided by 2 for lens and mirrors f = R 2

10 Waves and Optics Formula The focal length equals the radius of curvature divided by 2 for lens and mirrors f = R 2

11 Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin f = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

12 Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin f = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

13 Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin f = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

14 Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin  = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

15 Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin  = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

16 Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin  = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

17 Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin  = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

18 Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin  = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

19 Waves and Optics Formula Interference formula double or multiple slit equals the d sin  = m  d = distance between slits sin  = diffraction angle m = 1,2,.. Maxima The position of x m ( 1,2 maxima) equals product of the maxima, wavelength, distance to screen divided by the slit width x m = m L d

20 Plane Mirror

21

22

23

24

25

26

27

28

29

30 S o equals S i

31 Plane Mirror S o equals S i Image is upright, virtual, and same size

32 Plane Mirror S o equals S i Image is upright, virtual, and same size

33 Plane Mirror S o equals S i Image is upright, virtual, and same size

34 Plane Mirror So equals Si Image is upright, virtual, and same size

35 Plane Mirror

36

37

38

39

40

41 Image upright

42 Plane Mirror Image upright, virtual,

43 Plane Mirror Image upright, virtual, same size

44 Plane Mirror Block ½ mirror?

45 Plane Mirror Block ½ mirror? Image upright, virtual, same size

46 Plane Mirror Block ½ mirror? Image upright, virtual, same size Dimmer

47 Shadows

48

49 Elicpses – lunar, solar

50 Convex Mirror S o =10 cm

51 Convex Mirror S o =10 cm R=6cm f=3cm

52 Convex Mirror S o =10 cm R=6cm f=3cm

53 Concave Mirror S o =10 cm R=6cm f=+3cm

54 Concave Mirror

55

56

57

58

59

60 S i = 4.28 cm

61 Concave Mirror S i = 4.28 cm S o =10 cm R=6cm f=+3cm

62 Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

63 Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

64 Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

65 Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

66 Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

67 Convex Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

68 Convex Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

69 Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

70 Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

71 Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

72 Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

73 Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

74 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

75 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

76 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

77 Concave Mirror S i = 4.29 cm S o =6cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

78 Concave Mirror S i = 4.29 cm S o =6cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

79 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

80 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

81 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

82 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

83 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

84 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

85 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

86 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = -.429 Inverted Real Smaller

87 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Smaller

88 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Smaller

89 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Smaller

90 Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

91 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

92 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

93 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

94 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

95 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

96 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

97 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

98 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

99 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

100 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

101 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

102 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

103 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 1.0 Inverted Real Same Size

104 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Same Size

105 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Same Size

106 Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

107 Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

108 Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

109 Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

110 Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

111 Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

112 Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger Parallel Rays

113 Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger Parallel Rays - No Image

114 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

115 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

116 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

117 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

118 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

119 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

120 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

121 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

122 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

123 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

124 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

125 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = -15.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

126 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = -15.0 cm M = - s i / s o = - (-15.0 cm) 2.5 cm M = - 2.0 Inverted Real Larger

127 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = -15.0 cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Inverted Real Larger

128 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = -15.0 cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Upright Virtual Larger

129 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = -15.0 cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Upright Virtual Larger

130 Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = -15.0 cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Upright Virtual Larger

131 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

132 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

133 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

134 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

135 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

136 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

137 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

138 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

139 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

140 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

141 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

142 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

143 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

144 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = - 2.0 Inverted Real Larger

145 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Inverted Real Larger

146 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Upright Real Larger

147 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Upright Virtual Larger

148 Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Upright Virtual Smaller

149 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

150 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

151 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

152 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

153 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

154 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

155 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

156 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

157 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

158 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

159 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

160 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

161 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

162 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

163 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

164 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

165 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

166 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

167 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

168 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

169 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

170 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

171 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

172 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

173 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

174 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

175 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

176 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

177 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

178 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

179 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

180 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

181 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

182 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

183 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

184 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

185 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

186 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

187 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

188 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

189 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

190 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

191 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

192 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

193 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

194 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

195 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

196 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

197 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident

198 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident

199 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident  refracted

200 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident  refracted n 1 d incident =n 2 d refracted

201 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident  refracted n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius

202 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident  refracted n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted

203 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident  refracted n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted

204 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted

205 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted =7.5 0 n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted

206 Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted =7.5 0 n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted n 1 = air = 1.0

207 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted =7.5 0 n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted n 1 = air = 1.0 Sin 10 o = n 2 = n water = 1.33 Sin 7.5 o

208 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted =7.5 0 n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted n 1 = air = 1.0 Sin 10 o = n 2 = n water = 1.33 Sin 7.5 o

209 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted =7.5 0 n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted n 1 = air = 1.0 Sin 10 o = n 2 = n water = 1.33 Sin 7.5 o

210 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted =13.5 0 n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

211 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted =13.5 0 n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

212 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted =13.5 0 n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

213 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted =13.5 0 n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

214 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted =13.5 0 n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

215 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted =13.5 0 n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

216 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted =13.5 0 n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

217 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted =13.5 0 n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

218 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted =13.5 0 n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

219 Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted =13.5 0 n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

220 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

221 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

222 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

223 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

224 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

225 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

226 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

227 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0

228 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3

229 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3

230 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3

231 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3

232 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r velocity of light decreases v = c n Frequency remains the same n = vacuum n n glass = 1.3 n air = 1.0

233 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r velocity of light decreases v = c n Frequency remains the same n = vacuum n n air = 1.0 n glass = 1.3

234 Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r velocity of light decreases v = c n Frequency remains the same n = vacuum n n air =1.0 n glass = 1.3

235 Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

236 Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

237 Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

238 Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

239 Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

240 Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

241 Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

242 Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

243 Snell’s Law Incident  = 10 o Refracted  = 6.5 o n 1 for air = 1.0 n 2 = ? 10 0 6.5 0 n 1 sin  i = n 2 sin  2 n 1 sin  i = n 2 = 1.0 sin 10 o =1.5 sin  2 sin 6.5 0

244 Snell’s Law Incident  = 15 o Refracted  = 9.2 o n 1 for air = 1.0 n 2 = ? 15 0 9.2 0 n 1 sin  i = n 2 sin  2 n 1 sin  i = n 2 = 1.0 sin 10 o =1.5 sin  2 sin 9.2 0

245 Snell’s Law Incident  = 20 o Refracted  = 16.1 o n 1 for air = 1.0 n 2 = ? 20 0 16.1 0 n 1 sin  i = n 2 sin  2 n 1 sin  i = n 2 = 1.0 sin 20 o =1.5 sin  2 sin 16.1 0

246 Snell’s Law Incident  = 10.0 o Refracted  = 15.4 o n 1 = ? n 2 = 1.0 (air) 10 0 15.4 0 n 1 sin  i = n 2 sin  2 n 1 = n 2 sin  2 = = 1.0 sin 15.4 0 =1.5 sin  1 sin 10.0 0

247 Snell’s Law Incident  = 15.0 o Refracted  = 23.3 o n 1 = ? n 2 = 1.0 (air) 15 0 23.3 0 n 1 sin  i = n 2 sin  2 n 1 = n 2 sin  2 = = 1.0 sin 23.3 0 =1.5 sin  1 sin 15.0 0

248 Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle 30.1 0 n 1 sin  i = n 2 sin  2

249 Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle 30.1 0 n 1 sin  i = n 2 sin  2

250 Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle 30.1 0 n 1 sin  i = n 2 sin  2

251 Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 =1.0 n 1 1.5  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle 30.1 0 n 1 sin  i = n 2 sin  2

252 Snell’s Law Incident  = 20.0 o Refracted  = 31.6 o n 1 = ? n 2 = 1.0 (air) 20.0 0 30.1 0 n 1 sin  i = n 2 sin  2 n 1 = n 2 sin  2 = = 1.0 sin 31.6 0 =1.5 sin  1 sin 20.0 0

253 Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o Refracted  = 31.6 o n 1 = ? n 2 = 1.0 (air) 30.1 0 n 1 sin  i = n 2 sin  2

254 Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o Any incident angle above that critical angle will only reflect. 30.1 0 n 1 sin  i = n 2 sin  2

255 Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle 30.1 0 n 1 sin  i = n 2 sin  2

256 Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle 30.1 0 n 1 sin  i = n 2 sin  2

257 Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle 30.1 0 n 1 sin  i = n 2 sin  2

258 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

259 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

260 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

261 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

262 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

263 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

264 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

265 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

266 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

267 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

268 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

269 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

270 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

271 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

272 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

273 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

274 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

275 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

276 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

277 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0

278 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0 36 o

279 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.0 1.4 1.0 36 o Law of Reflection

280 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.4 1.0 1.4 1.0 How would the reflection and refraction be different ?

281 15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  2 1.4 10.7 o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  2 1.0 45.6 o =  2 36 o 45.6 o 1.4 1.0 1.4 1.0 How would the reflection and refraction be different ?

282 S o =9.0 cm R=6cm f=+3cm Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

283 Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller S o =9.0 cm R=6cm f= +3cm

284 Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller S o =9.0 cm R=6cm f= +3cm

285 Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller S o =9.0 cm R=6cm f= +3cm

286 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

287 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

288 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

289 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

290 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

291 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

292 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

293 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

294 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

295 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.29 cm 10 cm M = -.429 Inverted Real Smaller

296 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

297 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

298 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

299 Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

300 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

301 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

302 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

303 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

304 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

305 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

306 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

307 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

308 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 4.5 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

309 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 4.5 cm 9.0 cm M = -.50 Inverted Real Smaller

310 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Smaller

311 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Smaller

312 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Smaller

313 Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

314 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

315 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

316 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

317 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

318 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

319 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

320 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

321 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

322 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 6.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

323 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 6.0 cm 6.0 cm M = - 1.0 Inverted Real Same Size

324 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Same Size

325 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Same Size

326 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Same Size

327 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

328 Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

329 Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

330 Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 Inverted Real Larger

331 Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 No Image- Parallel RaysReal Larger

332 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 No Image- Parallel RaysReal Larger

333 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 No Image- Parallel RaysReal Larger

334 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 No Image- Parallel RaysReal Larger

335 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 No Image- Parallel RaysReal Larger

336 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 No Image- Parallel RaysReal Larger

337 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 No Image- Parallel RaysReal Larger

338 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = 9.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 No Image- Parallel RaysReal Larger

339 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - 9.0 cm 4.5 cm M = - 2.0 No Image- Parallel RaysReal Larger

340 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 No Image- Parallel RaysReal Larger

341 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright

342 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual

343 Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

344 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

345 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

346 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

347 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

348 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

349 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

350 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

351 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

352 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

353 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

354 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

355 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

356 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

357 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33 Upright Virtual Larger

358 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33

359 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33

360 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40

361 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40

362 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40

363 Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Smaller 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40

364 Compound Optical Instruement d o =___? h= ____ f 1 =___ cm f 2 = ___ cm 1.Measure d o, f 1,,f 2 h and draw rays to determine initial and final d i 2.Calculate initial and final d i positions 3.Measure final h and determine magnification by drawing and by calculations

365 Compound Microscope

366

367

368

369

370 S o =29 h=.67 f=15 S i =31 M=31/29 M=1.07 H=.75

371 Compound Microscope f e =26 S o =17

372 Compound Microscope

373

374

375

376

377 Compound Optical Instruement f=26 S o =17 h=.75 S i =-49 h = 2.0 M=49/17 M=2.9

378 Compound Microscope

379 Diffraction Path length differences produce constructive Interference if path length difference is a whole number multiples of the wavelength Destructive Interference will occur if path length difference is multiples of ½ of a wavelength

380 Diffraction Path length differences produce constructive Interference if path length difference is a whole number multiples of the wavelength Destructive Interference will occur if path length difference is multiples of ½ of a wavelength

381 Diffraction Path length differences produce constructive Interference if path length difference is a whole number multiples of the wavelength Destructive Interference will occur if path length difference is multiples of ½ of a wavelength

382 Single Slit Interference

383

384

385

386

387

388

389

390 Single Slit  max min

391 Single Slit  max min 

392 Single Slit  max Min 

393 Single Slit  max min

394 Single Slit Diffraction 

395

396

397

398  

399  

400  

401   d Sin  = opp = m hyp d m = 0,1,2… for minima

402 Single Slit Diffraction   d Sin  = opp = m hyp d m = 0,1,2… for minima

403 Single Slit Diffraction   d Sin  = opp = m hyp d m = 0,1,2… for minima

404 Single Slit Diffraction   d Sin  = opp = m hyp d m = 0,1,2… for minima

405 Single Slit Diffraction   d Sin  = opp = m hyp d m = 0,1,2… for minima

406 Single Slit Diffraction   d Sin  = opp = m hyp d m = 1,2… for minima

407 Single Slit Diffraction   d Sin  = opp = m hyp d m = 1,2… for minima

408 Single Slit Diffraction   Sin  = opp = m hyp d m = 1,2… for minima

409 Single Slit  max min

410 Single Slit  max min L = distance to screen

411 Single Slit  max min L = distance to screen xmxm X m distance To minima

412 Single Slit  max min Tan  = x m L xmxm X m distance To minima

413 Single Slit  max min Tan  = x m L xmxm X m distance To minima Sin  = m d

414 Single Slit  max min Tan  = x m L xmxm X m distance To minima Sin  = m d Tan  = sin 

415 Single Slit  max min Tan  = x m L xmxm X m distance To minima Sin  = m d Tan  = sin  X m = m L d

416 Young’s Double Slit Experiment

417

418

419

420

421 Max

422 Young’s Double Slit Experiment Max

423 Young’s Double Slit Experiment Max

424 Young’s Double Slit Experiment Max

425 Young’s Double Slit Experiment Max

426 Young’s Double Slit Experiment Max

427 Young’s Double Slit Experiment Max

428 Young’s Double Slit Experiment Max 

429 Young’s Double Slit Experiment Max  

430 Young’s Double Slit Experiment Max   Sin  = m = xm d L Length (L) to screen

431 Young’s Double Slit Experiment Max   Sin  = m = xm d L Length (L) to screen

432 Young’s Double Slit Experiment Max   Sin  = m = xm d L Length (L) to screen xmxm

433 Young’s Double Slit Experiment Max   Sin  = m = xm d L Length (L) to screen xmxm

434 Young’s Double Slit Experiment Max   Sin  = m = x m = tan  d L = x m d m L Length (L) to screen xmxm

435 Multiple Slit Diffraction Sin  = m = x m d L = x m d m L 101101 m = 0, 1,2, 3 … max

436 Multiple Slit Diffraction Sin  = m = x m d L = x m d m L 101101 m = 0, 1,2, 3 … max

437 Multiple Slit Diffraction Sin  = m = x m d L = x m d m L 101101 m = 0, 1,2, 3 … max

438 Multiple Slit Diffraction Sin  = m = x m d L = x m d m L 101101 m = 0, 1,2, 3 … max

439 Multiple Slit Diffraction Sin  = m = x m = tan  d L = x m d m L m L d 101101 m = 0, 1,2, 3 … max

440 Multiple Slit Diffraction Sin  = m = x m = tan  d L = x m d m L  x m m L d 101101 m = 0, 1,2, 3 … max

441 Single, Double, Multiple Slit Diffraction

442 Based on constructive and destructive interference

443 Single, Double, Multiple Slit Diffraction Based on constructive and destructive interference Caused by path length differences

444 Single, Double, Multiple Slit Diffraction Based on constructive and destructive interference Caused by path length differences Geometry based on sin  = m  x m =tan  d L

445 Single, Double, Multiple Slit Diffraction Based on constructive and destructive interference Caused by path length differences Geometry based on sin  = m  x m d L Single Slit m is for minima with broad central maxima Double / Multiple m is for maximum

446 Reflection-Interference, Newton’s Rings, Thin Film Interference Higher Index of Refraction Lower Index of Refraction

447 Reflection-Interference, Newton’s Rings, Thin Film Interference Higher Index of Refraction Lower Index of Refraction Relected ray experience a half wavelength phase change

448 Reflection-Interference, Newton’s Rings, Thin Film Interference

449 Higher Index of Refraction Lower Index of Refraction

450 Reflection-Interference, Newton’s Rings, Thin Film Interference Higher Index of Refraction Lower Index of Refraction No phase change occurs

451 Air Wedge Reflection-Interference Hair

452 Air Wedge Reflection-Interference

453 Air Glass

454 Air Wedge Reflection-Interference

455 Phase change reflection

456 Air Wedge Reflection-Interference Phase change reflection – 180 0 – n air < n glass

457 Air Wedge Reflection-Interference

458 Towards normal refraction

459 Air Wedge Reflection-Interference Towards normal refraction n air < n glass

460 Air Wedge Reflection-Interference

461

462 No phase change reflection n glass >n air

463 Air Wedge Reflection-Interference

464

465 Away from normal refraction

466 Air Wedge Reflection-Interference Away from normal refraction – n glass > n air

467 Air Wedge Reflection-Interference

468 Away from normal refraction

469 Air Wedge Reflection-Interference Away from normal refraction n glass > n air speeds up

470 Air Wedge Reflection-Interference

471

472 Phase change reflection

473 Air Wedge Reflection-Interference Phase change reflection n air < n glass

474 Air Wedge Reflection-Interference

475 Towards normal refraction

476 Air Wedge Reflection-Interference Towards normal refraction n air < n glass

477 Air Wedge Reflection-Interference Towards normal

478 Air Wedge Reflection-Interference Away from normal refraction

479 Air Wedge Reflection-Interference Away from normal Refraction n glass > n air

480 Air Wedge Reflection-Interference Towards normal No Phase Change Away from normal Away from normal Phase Change Toward Normal Phase Change Away from normal

481 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d ½ + 2d = D l

482 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change If the path length of the light that is transmitted through the upper glass plate, then reflected off the air glass interference of the bottom plate with 180 degree phase reversal,then transmitted through the upper plate is multiples of ½ of a the path length of the light that is refracts through the upper glass plate, then reflects off the upper glass air interference without a phase change will interfer constructively.

483 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d ½ + 2d = D l d = distance between the plates

484 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d ½ + 2d = D l

485 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½ + d ½ + 2d = D l

486 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½ + d ½ + 2d = D l

487 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference = n

488 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference = n

489 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference =  l =m = ½ + 2d m=1/2 + 2 d

490 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference =  l =m = ½ + 2d m=1/2 + 2 d

491 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference =  l =m = ½ + 2d m=1/2 + 2 d

492 Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference =  l =m = ½ + 2d 1/2 + 2 d

493 Thin Film Interference Antiflective coating with an index of refraction Greater than air but less than the glass lens n air =1.0 n thin film = 1.3 n glass = 1.7

494 Thin Film Interference

495

496

497

498

499

500

501

502 Effective refracted ray path length= thickness down * index of refraction because the wavelength decreases as it enters the higher index of refraction of the medium added to to thickness up * index of refraction added to ½ wavelength due to phase refersal. l effrr = nt + nt + ½ l effrr = 2nt+ ½ Reflected ray l effr = ½ Constructive inteference occurs at whole multiples of wavelength path length differences. Therefore in this case the refracted,reflected,refracted ray will show constructive interference if 2nt = m  t = m  approxiamately  2n Destructive interference occurs at ½ whole multiples of wavelength path length differences Therefore in this case the refracted,reflected,refracted ray will show destructive interference If 2nt = m  t=m  approxiamately 2 4n n =1.0 n thin film = 1.3

503 Thin Film Interference Antiflective coating with an index of refraction Greater than and the glass lens n air =1.0 n thin film = 1.6 n glass = 1.4

504 Thin Film Interference

505

506

507

508

509

510

511

512 Effective refracted ray path length= thickness down * index of refraction because the wavelength decreases as it enters the higher index of refraction of the medium added to to thickness up * index of refraction l effrr = nt + nt l effrr = 2nt Reflected ray l effr = ½ Constructive inteference occurs at whole multiples of wavelength path length differences. Therefore in this case the refracted,reflected,refracted ray will show constructive interference if 2nt = m  - ½  t = m +1/2  t = (m+1/2)  2n 2n Destructive interference occurs at ½ whole multiples of wavelength path length differences Therefore in this case the refracted,reflected,refracted ray will show destructive interference If 2nt = m  t = m +  2 4n 4n n =1.0 n thin film = 1.3

513 Thin Film Interference Effective refracted ray path length= thickness down * index of refraction because the wavelength decreases as it enters the higher index of refraction of the medium added to to thickness up * index of refraction added to ½ wavelength due to phase refersal. l effrr = nt + nt + ½ l effrr = 2nt+ ½ Reflected ray l effr = ½ Constructive inteference occurs at whole multiples of wavelength path length differences. Therefore in this case the refracted,reflected,refracted ray will show constructive interference if 2nt = m  t = m  2n Destructive interference occurs at ½ whole multiples of wavelength path length differences Therefore in this case the refracted,reflected,refracted ray will show destructive interference If 2nt = m  t=m 2 4n n =1.0 n thin film = 1.3

514 Thin film interference n 1 = air n 2 =1.33

515 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

516 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

517 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

518 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

519 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

520 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

521 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

522 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

523 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n

524 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n

525 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n

526 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n

527 Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n If l was 4.8 x10 -7 m what would the miniumum thickness need to cause Constructive interference? If l was 4.8 x10 -7 m what would the miniumum thickness need to cause Destructive interference?

528 Summary Constructive interference – pathlength equals m Destructive interference – pathlength equal m 2 If n 1 n 3 or n 1 >n 2 <n 3 than t = (m+1/2)  constructive 2n If n 1 n 3 or n 1 >n 2 <n 3 than t = (m+1/2)  destructive 4n

529 Summary Constructive interference – pathlength equals m Destructive interference – pathlength equal m 2 If n 1 n 2 >n 3 than t = m  constructive 2n If n 1 n 2 >n 3 than t = m  destructive 4n


Download ppt "Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: Units Index of refraction of a medium equals the ratio."

Similar presentations


Ads by Google