Download presentation
Presentation is loading. Please wait.
Published byCharity Brianna Charles Modified over 9 years ago
1
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics §9.4a Logarithm Rules
2
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §9.3 → Common & Natural Logs Any QUESTIONS About HomeWork §9.3 → HW-45 9.3 MTH 55
3
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 3 Bruce Mayer, PE Chabot College Mathematics Product Rule for Logarithms Let M, N, and a be positive real numbers with a ≠ 1, and let r be any real number. Then the PRODUCT Rule That is, The logarithm of the product of two (or more) numbers is the sum of the logarithms of the numbers.
4
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 4 Bruce Mayer, PE Chabot College Mathematics Quotient Rule for Logarithms Let M, N, and a be positive real numbers with a ≠ 1, and let r be any real number. Then the QUOTIENT Rule That is, The logarithm of the quotient of two (or more) numbers is the difference of the logarithms of the numbers
5
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 5 Bruce Mayer, PE Chabot College Mathematics Power Rule for Logarithms Let M, N, and a be positive real numbers with a ≠ 1, and let r be any real number. Then the POWER Rule That is, The logarithm of a number to the power r is r times the logarithm of the number.
6
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 6 Bruce Mayer, PE Chabot College Mathematics Example Product Rule Express as an equivalent expression that is a single logarithm: log 3 (9∙27) Solution log 3 (9·27) =log 3 9 + log 3 27. As a Check note that log 3 (9·27) = log 3 243 = 5 3 5 = 243 And that log 3 9 + log 3 27 = 2 + 3 = 5. 3 2 = 9 and 3 3 = 27
7
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 7 Bruce Mayer, PE Chabot College Mathematics Example Product Rule Express as an equivalent expression that is a single logarithm: log a 6 + log a 7 Solution = log a (42). Using the product rule for logarithms log a 6 + log a 7 = log a (6·7)
8
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 8 Bruce Mayer, PE Chabot College Mathematics Example Quotient Rule Express as an equivalent expression that is a single logarithm: log 3 (9/y) Solution log 3 (9/y) =log 3 9 – log 3 y. Using the quotient rule for logarithms
9
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 9 Bruce Mayer, PE Chabot College Mathematics Example Quotient Rule Express as an equivalent expression that is a single logarithm: log a 6 − log a 7 Solution log a 6 – log a 7 = log a (6/7) Using the quotient rule for logarithms “in reverse”
10
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 10 Bruce Mayer, PE Chabot College Mathematics Example Power Rule Use the power rule to write an equivalent expression that is a product: a) log a 6 − 3 Solution = log 4 x 1/2 Using the power rule for logarithms a) log a 6 − 3 = − 3log a 6 = ½ log 4 x Using the power rule for logarithms
11
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 11 Bruce Mayer, PE Chabot College Mathematics Example Use The Rules Given that log 5 z = 3 and log 5 y = 2, evaluate each expression. Solution
12
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 12 Bruce Mayer, PE Chabot College Mathematics Example Use The Rules Solution Soln
13
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 13 Bruce Mayer, PE Chabot College Mathematics Example Use The Rules Soln
14
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 14 Bruce Mayer, PE Chabot College Mathematics Example Use The Rules Express as an equivalent expression using individual logarithms of x, y, & z Soln a) = log 4 x 3 – log 4 yz = 3log 4 x – log 4 yz = 3log 4 x – (log 4 y + log 4 z) = 3log 4 x –log 4 y – log 4 z
15
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 15 Bruce Mayer, PE Chabot College Mathematics Example Use The Rules Soln b)
16
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 16 Bruce Mayer, PE Chabot College Mathematics Caveat on Log Rules Because the product and quotient rules replace one term with two, it is often best to use the rules within parentheses, as in the previous example
17
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 17 Bruce Mayer, PE Chabot College Mathematics Example Expand by Log Rules Write the expressions in expanded form Solution a)
18
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 18 Bruce Mayer, PE Chabot College Mathematics Example Expand by Log Rules Solution b)
19
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 19 Bruce Mayer, PE Chabot College Mathematics Example Condense Logs Write the expressions in condensed form
20
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 20 Bruce Mayer, PE Chabot College Mathematics Example Condense Logs Solution a) Solution b)
21
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 21 Bruce Mayer, PE Chabot College Mathematics Example Condense Logs Solution c)
22
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 22 Bruce Mayer, PE Chabot College Mathematics Example Condense Logs Solution d)
23
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 23 Bruce Mayer, PE Chabot College Mathematics Log of Base to Exponent For any Base a That is, the logarithm, base a, of a to an exponent is the exponent
24
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 24 Bruce Mayer, PE Chabot College Mathematics Example Log Base-to-Exp Simplify: a) log 6 6 8 b) log 3 3 −3.4 Solution a) log 6 6 8 =8 8 is the exponent to which you raise 6 in order to get 6 8. Solution b) log 3 3 − 3.4 = − 3.4
25
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 25 Bruce Mayer, PE Chabot College Mathematics Summary of Log Rules For any positive numbers M, N, and a with a ≠ 1
26
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 26 Bruce Mayer, PE Chabot College Mathematics Typical Log-Confusion Beware Beware that Logs do NOT behave Algebraically. In General:
27
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 27 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problems From §9.4 Exercise Set 24, 30, 36, 58, 60 Condense Logarithm
28
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 28 Bruce Mayer, PE Chabot College Mathematics All Done for Today Mathematical Association Log Poster
29
BMayer@ChabotCollege.edu MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 29 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics Appendix –
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.