Download presentation
Presentation is loading. Please wait.
Published byBritney Davidson Modified over 9 years ago
1
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics §3.1 Relative Extrema
2
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §2.6 → Implicit Differentiation Any QUESTIONS About HomeWork §2.6 → HW-12 2.6
3
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 3 Bruce Mayer, PE Chabot College Mathematics §3.1 Learning Goals Discuss increasing and decreasing functions Define critical points and relative extrema Use the first derivative test to study relative extrema and sketch graphs
4
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 4 Bruce Mayer, PE Chabot College Mathematics Increasing & Decreasing Values A function f is INcreasing if whenever a<b, then: INcreasing is Moving UP from Left→Right A function f is DEcreasing if whenever a<b, then: DEcreasing is Moving DOWN from Left→Right
5
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 5 Bruce Mayer, PE Chabot College Mathematics Inc & Dec Values Graphically INcreasing DEcreasing
6
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 6 Bruce Mayer, PE Chabot College Mathematics Inc & Dec with Derivative If for every c on the interval [a,b] That is, the Slope is POSITIVE Then f is INcreasing on [a,b] If for every c on the interval [a,b] That is, the Slope is NEGATIVE Then f is DEcreasing on [a,b]
7
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 7 Bruce Mayer, PE Chabot College Mathematics Example Inc & Dec The function, y = f(x),is decreasing on [−2,3] and increasing on [3,8]
8
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 8 Bruce Mayer, PE Chabot College Mathematics Example Inc & Dec Profit The default list price of a small bookstore’s paperbacks Follows this Formula Where –x ≡ The Estimated Sales Volume in No. Books –p ≡ The Book Selling-Price in $/book The bookstore buys paperbacks for $1 each, and has daily overhead of $50
9
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 9 Bruce Mayer, PE Chabot College Mathematics Example Inc & Dec Profit For this Situation Find: Find the profit as a function of x intervals of increase and decrease for the Profit Function SOLUTION Profit is the difference of revenue and cost, so first determine the revenue as a function of x:
10
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 10 Bruce Mayer, PE Chabot College Mathematics Example Inc & Dec Profit And now cost as a function of x: Then the Profit is the Revenue minus the Costs:
11
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 11 Bruce Mayer, PE Chabot College Mathematics Example Inc & Dec Profit Now we turn to determining the intervals of increase and decrease. The graph of the profit function is shown next on the interval [0,100] (where the price and quantity demanded are both non-negative).
12
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 12 Bruce Mayer, PE Chabot College Mathematics Example Inc & Dec Profit From the Plot Observe that The profit function appears to be increasing until some sales level below 40, and then decreasing thereafter. Although a graph is informative, we turn to calculus to determine the exact intervals
13
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 13 Bruce Mayer, PE Chabot College Mathematics Example Inc & Dec Profit We know that if the derivative of a function is POSITIVE on an open interval, the function is INCREASING on that interval. Similarly, if the derivative is negative, the function is decreasing So first compute the derivative, or Slope, function:
14
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 14 Bruce Mayer, PE Chabot College Mathematics Example Inc & Dec Profit On Increasing intervals the Slope is POSTIVE or NonNegative so in this case need Solving This InEquality: The profit function is DEcreasing on the interval [36,100]
15
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 15 Bruce Mayer, PE Chabot College Mathematics Relative Extrema (Max & Min) A relative maximum of a function f is located at a value M such that f(x) ≤ f(M) for all values of x on an interval a<M<b A relative minimum of a function f is located at a value m such that f(x) ≥ f(m) for all values of x on an interval a<m<b
16
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 16 Bruce Mayer, PE Chabot College Mathematics Peaks & Valleys Extrema is precise math terminology for Both of The TOP of a Hill; that is, a PEAK The Bottom of a Trough, That is a VALLEY PEAK VALLEY
17
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 17 Bruce Mayer, PE Chabot College Mathematics Rel&Abs Max& Min Rel&Abs Max& Min Relative Max Absolute Max Relative Min Absolute Min
18
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 18 Bruce Mayer, PE Chabot College Mathematics Critical Points Let c be a value in the domain of f Then c is a Critical Point If, and only if HORIZONTAL slope at c VERTICAL slope at c
19
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 19 Bruce Mayer, PE Chabot College Mathematics Critical Points GeoMetrically Horizontal Vertical (0.1695, 1.2597)
20
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 20 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 07Jul13 % XYfcnGraph6x6BlueGreenBkGndTemplate1306.m % clear; clc; % The Limits xmin = 0; xmax = 0.27; ymin =0; ymax = 1.3; % The FUNCTION x = linspace(xmin,xmax,1000); y1 = x.*(12-10*x-100*x.^2); % % The Max Condition [yHi,I] = max(y1); xHi = x(I); y2 = yHi*ones(1,length(x)); % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x,y1, 'LineWidth', 5),axis([.05 xmax.6 ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y=f(x)'),... title(['\fontsize{16}MTH15 Zero Critical-Pt',]),... annotation('textbox',[.15.05.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', ' ','FontSize',7) hold on plot(x,y2, '-- m', xHi,yHi, 'd r', 'MarkerSize', 10,'MarkerFaceColor', 'r', 'LineWidth', 2) set(gca,'XTick',[xmin:.05:xmax]); set(gca,'YTick',[ymin:.1:ymax]) hold off
21
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 21 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 23Jun13 % XYfcnGraph6x6BlueGreenBkGndTemplate1306.m % ref: % % The Limits xmin = 0; xmax = 3; ymin = 0; ymax = 20; % The FUNCTION x = linspace(xmin,1.99,1000); y = -1./(x-2); % % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x,y, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x)'),... title(['\fontsize{16}MTH15 \infty Critical-Pt',]),... annotation('textbox',[.51.05.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', ' ','FontSize',7) hold on plot([2 2], [ymin,ymax], '--m', 'LineWidth', 3) set(gca,'XTick',[xmin:0.5:xmax]); set(gca,'YTick',[ymin:2:ymax])
22
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 22 Bruce Mayer, PE Chabot College Mathematics Example Critical Numbers Find all critical numbers and classify them as a relative maximum, relative minimum, or neither for The Function:
23
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 23 Bruce Mayer, PE Chabot College Mathematics Example Critical Numbers SOLUTION Relative extrema can only take place at critical points (but not necessarily all critical points end up being extrema!) Thus we need to find the critical points of f. In other words, values of x so that Think Division by Zero
24
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 24 Bruce Mayer, PE Chabot College Mathematics Example Critical Numbers For the Zero Critical Point Now need to consider critical points due to the derivative being undefined
25
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 25 Bruce Mayer, PE Chabot College Mathematics Example Critical Numbers The Derivative Fcn, f’ = 4 − 4/x 3 is undefined when x = 0. However, it is very important to note that 0 cannot be the location of a critical point, because f is also undefined at 0 In other words, no critical point of a function can exist at c if no point on f exists at c
26
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 26 Bruce Mayer, PE Chabot College Mathematics Example Critical Numbers Use Direction Diagram to Classify the Critical Point at x = 1 Calculating the derivative/slope at a test point to the left of 1 (e.g. x = 0.5) find Similarly for x>1, say 2: → f is DEcreasing → f is INcreasing
27
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 27 Bruce Mayer, PE Chabot College Mathematics Example Critical Numbers From our Direction Diagram it appears that f has a relative minimum at x = 1. A graph of the function corroborates this assessment. Relative Minimum
28
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 28 Bruce Mayer, PE Chabot College Mathematics Example Evaluating Temperature The average temperature, in degrees Fahrenheit, in an ice cave t hours after midnight is modeled by: Use the Model to Answer Questions: At what times was the temperature INcreasing? DEcreasing? The cave occupants light a camp stove in order to raise the temperature. At what times is the stove turned on and then off?
29
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 29 Bruce Mayer, PE Chabot College Mathematics Example Evaluating Temperature SOLUTION: The Temperature “Changes Direction” before & after a Max or Min (Extrema) Thus need to find the Critical Points which give the Location of relative Extrema To find critical points of T, determine values of t such that one these occurs – dT/dt = 0 or –dT/dt → ±∞ (undefined)
30
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 30 Bruce Mayer, PE Chabot College Mathematics Example Evaluating Temperature Taking dT/dt: Using the Quotient Rule
31
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 31 Bruce Mayer, PE Chabot College Mathematics Example Evaluating Temperature Expanding and Simplifying When dT/dt → ∞ The denominator being zero causes the derivative to be undefined –however,(t 2 −t +1) 2 is zero exactly when t 2 −t + 1 is zero, so it results in NO critical values
32
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 32 Bruce Mayer, PE Chabot College Mathematics Example Evaluating Temperature When dT/dt = 0 Thus Find: Using the quadratic formula (or a computer algebra system such as MuPAD), find
33
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 33 Bruce Mayer, PE Chabot College Mathematics Example Evaluating Temperature For dT/dt = 0 find: t ≈ −1.15 or t ≈ 0.954 Because T is always continuous (check that the DeNom fcn, (t 2 −t +1) 2 has no real solutions) these are the only two values at which T can change direction Thus Construct a Direction Diagram with Two BreakPoints: t ≈ −1.15 t ≈ +0.954
34
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 34 Bruce Mayer, PE Chabot College Mathematics Example Evaluating Temperature The Direction Diagram We test the derivative function in each of the three regions to determine if T is increasing or decreasing. Testing t = −2 The negative Slope indicates that T is DEcreasing
35
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 35 Bruce Mayer, PE Chabot College Mathematics Example Evaluating Temperature The Direction Diagram Now we test in the second region using t = 0: The positive Slope indicates that T is INcreasing
36
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 36 Bruce Mayer, PE Chabot College Mathematics Example Evaluating Temperature The Direction Diagram Now we test in the second region using t = 1: Again the negative Slope indicates that T is DEcreasing
37
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 37 Bruce Mayer, PE Chabot College Mathematics Example Evaluating Temperature The Completed Slope Direction-Diagram: We conclude that the function is increasing on the approximate interval (−1.15, 0.954) and decreasing on the intervals (−∞, −1.15) & (0.954, +∞) It appears that the stove was lit around 10:51pm (1.15 hours before midnight) and turned off around 12:57am (0.95 hours after midnight), since these are the relative extrema of the graph.
38
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 38 Bruce Mayer, PE Chabot College Mathematics Example Evaluating Temperature Graphically Relative Max (Stove OFF) Relative Min (Stove On)
39
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 39 Bruce Mayer, PE Chabot College Mathematics MuPAD Plot Code
40
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 40 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problems From §3.1 P40 → Use Calculus to Sketch Graph Similar to P52 → Sketch df/dx for f(x) Graph at right P60 → Machine Tool Depreciation
41
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 41 Bruce Mayer, PE Chabot College Mathematics All Done for Today Critical (Mach) Number Ernst Mach
42
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 42 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics Appendix
43
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 43 Bruce Mayer, PE Chabot College Mathematics
44
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 44 Bruce Mayer, PE Chabot College Mathematics
45
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 45 Bruce Mayer, PE Chabot College Mathematics
46
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 46 Bruce Mayer, PE Chabot College Mathematics
47
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 47 Bruce Mayer, PE Chabot College Mathematics
48
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 48 Bruce Mayer, PE Chabot College Mathematics
49
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 49 Bruce Mayer, PE Chabot College Mathematics
50
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 50 Bruce Mayer, PE Chabot College Mathematics P3.1-40 Hand Sketch
51
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 51 Bruce Mayer, PE Chabot College Mathematics P3.1-40 MuPAD Graph
52
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 52 Bruce Mayer, PE Chabot College Mathematics WhiteBd Graphic for P3.1-52
53
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 53 Bruce Mayer, PE Chabot College Mathematics
54
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 54 Bruce Mayer, PE Chabot College Mathematics
55
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 55 Bruce Mayer, PE Chabot College Mathematics
56
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 56 Bruce Mayer, PE Chabot College Mathematics
57
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 57 Bruce Mayer, PE Chabot College Mathematics
58
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 58 Bruce Mayer, PE Chabot College Mathematics
59
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 59 Bruce Mayer, PE Chabot College Mathematics
60
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 60 Bruce Mayer, PE Chabot College Mathematics
61
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 61 Bruce Mayer, PE Chabot College Mathematics P3.1-60 MuPAD
62
BMayer@ChabotCollege.edu MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 62 Bruce Mayer, PE Chabot College Mathematics
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.