Presentation is loading. Please wait.

Presentation is loading. Please wait.

Verification of Java Programs using Symbolic Execution and Loop Invariant Generation Corina Pasareanu (Kestrel Technology LLC) Willem Visser (RIACS/USRA)

Similar presentations


Presentation on theme: "Verification of Java Programs using Symbolic Execution and Loop Invariant Generation Corina Pasareanu (Kestrel Technology LLC) Willem Visser (RIACS/USRA)"— Presentation transcript:

1 Verification of Java Programs using Symbolic Execution and Loop Invariant Generation Corina Pasareanu (Kestrel Technology LLC) Willem Visser (RIACS/USRA) Automated Software Engineering Group NASA Ames

2 Outline Motivation and Overview Examples Symbolic Execution and Java PathFinder Program Verification and Invariant Generation Experiments Related Work and Conclusions

3 Motivation Ariane 501 Mars Polar Lander Software errors can be very costly. Software verification is recognized as an important and difficult problem. Spirit More recently …

4 Java PathFinder with Symbolic Execution Previous work: Java PathFinder (JPF) - explicit-state model checker for Java Extended with symbolic execution [TACAS’03] –Motivation Open systems, large input data domains Complex data structures –Applications: test-input generation, error detection –Shortcoming: cannot prove properties of looping programs New: Invariant generation to deal with loops

5 Verification Framework Overview Uses symbolic execution Requires annotations –method preconditions –loop invariants Novel technique for invariant generation –uses invariant strengthening, approximation, and refinement –handles boolean and numeric constraints, dynamically allocated structures, arrays

6 Array Example 1 // precondition: a!=null; public static void set(int a[]) { int i = 0; while (i < a.length) { a[i] = 0; i++; } assert a[0] == 0; } Loop invariants: 0≤i ¬(a[0]  0  0<i)

7 Array Example 2 // precondition: a!=null; public static void set(int a[]) { int i = 0; while (i < a.length) { a[i] = 0; i++; } assert forall int j: a[j] == 0; } Loop invariant: ¬(a[j]  0  a.length ≤ i  0 ≤ j < a.length)  ¬(a[j]  0  j < i  0 ≤ i,j < a.length)

8 Symbolic Execution Execute a program on symbolic input values For each path, build a path condition –condition on inputs in order for the execution to follow that path –check satisfiability of path condition Symbolic state –symbolic values/expressions for variables –path condition –program counter Various applications –test case generation –program verification Traditionally: sequential programs with fixed number of integers

9 x = 1, y = 0 1 > 0 ? true x = 1 + 0 = 1 y = 1 – 0 = 1 x = 1 – 1 = 0 0 > 1 ? false Swap Example int x, y; if (x > y) { x = x + y; y = x – y; x = x – y; if (x > y) assert false; } Concrete Execution Path:Code that swaps 2 integers:

10 Swap Example [PC:true] x = X, y = Y [PC:true] X > Y ? [PC:X>Y] y = X + Y – Y = X [PC:X>Y] x = X + Y – X = Y [PC:X>Y] Y > X ? int x, y; if (x > y) { x = x + y; y = x – y; x = x – y; if (x > y) assert false; } Code that swaps 2 integers:Symbolic Execution Tree: [PC:X≤Y] END[PC:X>Y] x = X+Y false true [PC:X>Y  Y≤X ] END [PC:X>Y  Y>X] END falsetrue path condition

11 Generalized Symbolic Execution Handles –dynamically allocated data structures, arrays –preconditions, concurrency Uses JPF –to generate and explore the symbolic execution tree Implementation via instrumentation –programs instrumented to enable JPF to perform symbolic execution –Omega library used to check satisfiability of numeric path conditions (for linear integer constraints) –lazy initialization for arrays and structures

12 Instrumentation void set (int a[]) { int i = 0; while (i < a.length) { a[i] = 0; i++; } assert a[0] == 0; } void set() { IntArrayStruct a = new IntArrayStruct(); Expression i = new IntConstant(0); while (i._LT(a.length)) { a._set(i,0); i = i._plus(1); } assert a._get(0)._EQ(0); } Instrumented code

13 Library classes class Expression { … static PathCondition pc; Expression _plus(Expression e) {…} boolean _LT(Expression e) { return pc._update_LT(this,e); } } class PathCondition { … Constraints c; boolean _update_LT(Expression l, Expression r) { boolean result = Verify.choose_boolean(); if(result) c.add_constraint_LT(l, r); else c.add_constraint_GE(l, r); Verify.ignoreIf(!c.is_satisfiable()); return result; } } class ArrayCell { Expression elem; Expression idx; } class IntArrayStruct { … Vector _v; Expression length; public Expression _get(Expression idx) { Verify.ignoreIf !inbounds; //assert inbounds ArrayCell cell = _ArrayCell(idx); return cell.elem; } ArrayCell _ArrayCell(Expression idx) { for(int i=0; i<_v.size(); i++) { ArrayCell cell=(ArrayCell)_v.elementAt(i); if(cell.idx._EQ(idx)) return cell; } ArrayCell ac = new ArrayCell(…); _v.add(ac); return ac; }

14 Induction Step Base Case Proving Properties of Programs X = init; while (C(X)) X = B(X); assert P(X); Looping program: Program execution: while … true while … true while … true … May be infinite … How to reason about infinite executions? Has finite execution. Easy to reason about! Problem: How do we come up with Inv? Requires great user ingenuity. X = init; assert Inv(X); X = new symbolic values; assume Inv(X); if (C(X)) { X = B(X); assert Inv(X); } else assert P(X); Non-looping program: Find loop invariant Inv

15 Iterative Invariant Strengthening Model check the program: Start with Inv 0 = ¬(¬C  ¬P) Base case violation: error in the program! No errors: done, found loop invariant! Induction step violation: apply strengthening - counterexample path conditions: PC 1, PC 2 … PC n - strengthen invariant: Inv 1 = Inv 0  ¬  PC i - repeat X = init; assert Inv(X); X = new symbolic values; assume Inv(X); if (C(X)) { X = B(X); assert Inv(X); } else assert P(X);

16 Iterative Strengthening Inv 0 Inv 1 … More precise invariants State space: Inv May result in an infinite sequence of exact invariants: Inv 0, Inv 1, Inv 2 … (we may get infinitely many generated constraints)

17 Heuristic for Termination At each step k, apply heuristic for current candidate Inv k -it is also iterative strengthening, but … -use oldPC instead of PC - oldPC is weaker than PC (PC → oldPC) - obtains a stronger invariant: Inv k j+1 = Inv k j  ¬  oldPC i Iterative approximation X = init; assert Inv(X); X = new symbolic values; assume Inv_k(X); if (C(X)) { X = B(X); assert Inv_k(X); } else assert P(X); Check the inductive step: oldPC= q  r PC= q  r  v new constraint (encodes the effect of the loop)

18 X = init; assert Inv(X); X = new symbolic values; assume Inv_k(X); if (C(X)) { X = B(X); assert Inv_k(X); } else assert P(X); Check the inductive step: Iterative Approximation Symbolic execution results in finite universe of constraints U k New constraints from Inv(B(X)) Refinement: if base case fails for Inv k j backtrack compute Inv k+1 apply approximation State space at step k: Approximation too coarse Inv k Inv Inv k+1 Inv k 1 PC oldPC Results in finite sequence of approximate invariants: Inv k 1, Inv k 2 … Inv k m

19 Invariant Generation Method Inv 0 Inv 1 … Inv k Inv k+1 … Inv k 1 Inv k 2 … Inv k m Refinement - backtrack on base case violation Iterative strengthening Iterative approximation If there is an error in the program, the method is guaranteed to terminate If the program is correct wrt. the property, the method might not terminate

20 (1) Start with Inv 0 = ¬(¬C  ¬P) (2) Check the base case and the inductive step –if both checks return true: done - property true! –if inductive step fails: apply iterative approximation; go to (2) –if base case fails for an exact invariant: done - property false! –if base case fails for an approximate invariant: apply refinement; go to (2) If there is an error in the program, the method is guaranteed to terminate If the program is correct with respect to the property, the method might not terminate General Verification Method Inv 0 Inv 1 … Inv k Inv k+1 … Inv k 1 Inv k 2 … Inv k m refinement - backtrack on base case violation

21 Array Example 1 // precondition: a!=null; public static void set(int a[]) { int i = 0; while (i < a.length) { a[i] = 0; i++; } assert a[0] == 0; }

22 Proof public static void set() { Expression i = new IntConstant(0); IntArrayStruct a = new IntArrayStruct(); assert Inv; i = new SymbolicInt(); Verify.ignoreIf (!Inv); // assume Inv if (i._LT(a.length)) { a._set(i,0); i=i._plus(1); print (PC); // oldPC if (!Inv) { print (PC); // PC assert false; } } else assert a._get(0)._EQ(0); } Inv 0 = ¬(i ≥ a.length  a[0]  0) Error oldPC: i > 0  a[0]  0 PC: i > 0  a[0]  0  (i + 1) ≥ a.length Iterative approximation: Inv 0 1 =Inv 0  ¬oldPC = ¬(i ≥ a.length  a[0]  0)  ¬(i > 0  a[0]  0) = ¬(i > 0  a[0]  0) drop new constraint

23 [PC: I<a.length  a[0]  0] i=I public static void set(int [] a) { int i = 0; assert Inv; //i,a = new symbolic values; assume Inv; if (i < a.length) { a[i]=0; i++; // oldPC if (!Inv) { // PC assert false; } } else assert a[0]==0; } Proof + tree Error Inv 0 = ¬(i ≥ a.length  a[0]  0)= (i<a.length  a[0]  0)  (i<a.length  a[0] = 0)  (i ≥ a.length  a[0] = 0) [PC: 0<I<a.length  a[0]  0] a[I]=0 [PC: I<a.length  a[0]  0  I  0  0≤I<a.length][PC: I<a.length  a[0]  0  I=0] …

24 [PC: 0<I<a.length  a[0]  0] i=I+1 [PC: I<a.length  a[0]  0] i=I public static void set(int [] a) { int i = 0; assert Inv; //i,a = new symbolic values; assume Inv; if (i < a.length) { a[i]=0; i++; // oldPC if (!Inv) { // PC assert false; } } else assert a[0]==0; } Proof + tree Error [PC: 0<I<a.length  a[0]  0] a[I]=0 [PC: I<a.length  a[0]  0  I  0  0≤I<a.length][PC: I<a.length  a[0]  0  I=0] … Inv 0 = ¬(i ≥ a.length  a[0]  0)= (i<a.length  a[0]  0)  (i<a.length  a[0] = 0)  (i ≥ a.length  a[0] = 0)

25 [PC: 0<I<a.length  a[0]  0] I+1≥a.length  a[0]  0 ? [PC: 0<I<a.length  a[0]  0] i=I+1 [PC: I<a.length  a[0]  0] i=I public static void set(int [] a) { int i = 0; assert Inv; //i,a = new symbolic values; assume Inv; if (i < a.length) { a[i]=0; i++; // oldPC if (!Inv) { // PC assert false; } } else assert a[0]==0; } Proof + tree Error [PC: 0<I<a.length  a[0]  0] a[I]=0 [PC: I<a.length  a[0]  0  I  0  0≤I<a.length][PC: I<a.length  a[0]  0  I=0] … Inv 0 = ¬(i ≥ a.length  a[0]  0)= (i<a.length  a[0]  0)  (i<a.length  a[0] = 0)  (i ≥ a.length  a[0] = 0) [PC: 0<I<a.length  a[0]  0  I+1≥a.length] true Error …

26 [PC: 0<I<a.length  a[0]  0] I+1≥a.length  a[0]  0 ? [PC: 0<I<a.length  a[0]  0] i=I+1 [PC: I<a.length  a[0]  0] i=I public static void set(int [] a) { int i = 0; assert Inv; //i,a = new symbolic values; assume Inv; if (i < a.length) { a[i]=0; i++; // oldPC if (!Inv) { // PC assert false; } } else assert a[0]==0; } Proof + tree Error [PC: 0<I<a.length  a[0]  0] a[I]=0 [PC: 0<I<a.length  a[0]  0  I+1≥a.length] true [PC: I<a.length  a[0]  0  I  0  0≤I<a.length][PC: I<a.length  a[0]  0  I=0] … Iterative approximation: Inv 0 1 =Inv 0  ¬oldPC = ¬(i ≥ a.length  a[0]  0)  ¬(0 0  a[0]  0) oldPC: 0<i <a.length  a[0]  0 PC: 0<i <a.length  a[0]  0  (i + 1) ≥ a.length oldPC: PC: Inv 0 = ¬(i ≥ a.length  a[0]  0)= (i<a.length  a[0]  0)  (i<a.length  a[0] = 0)  (i ≥ a.length  a[0] = 0) Error …

27 Array Example 2 // precondition: a!=null; public static void set(int a[]) { int i = 0; while (i < a.length) { a[i] = 0; i++; } assert forall int j: a[j] == 0; }

28 Proof Inv 0 = ¬(i ≥ a.length  a[j]  0  0 ≤ j< a.length) oldPC: a[j]  0  j < i  0 ≤ i,j < a.length Iterative approximation: Inv 0 1 =Inv 0  ¬oldPC = ¬(i ≥ a.length  a[j]  0  0 ≤ j< a.length)  ¬(a[j]  0  j < i  0 ≤ i,j < a.length) PC: a[j]  0  j<i  0 ≤ i,j <a.length  (i + 1) ≥ a.length public static void set(int [] a) { int i = 0; assert Inv; //i,a = new symbolic values; //j = new symbolic value; assume Inv; if (i < a.length) { a[i]=0; i++; // oldPC if (!Inv) { // PC assert false; } } else assert a[j]==0; }

29 Partition Example class Cell { int val; Cell next; Cell partition (Cell l, int v) { Cell curr = l, prev = null; Cell nextCurr, newl = null; while (curr != null) { nextCurr = curr.next; if (curr.val > v) { if (prev != null) prev.next = nextCurr; if (curr == l) l = nextCurr; curr.next = newl; assert curr != prev; newl = curr; } else prev = curr; curr = nextCurr; } return newl; }} Loop invariant: ¬(curr=prev  curr≠null  curr.elem>v)  ¬(curr≠ prev  prev≠ null  curr ≠ null  prev.elem>v  curr.elem>v  prev≠curr.next)

30 Pathological Example void m (int n) { int x = 0; int y = 0; while (x <n) {/* loop 1 */ x++; y++; } /* hint: x == y */ while (x!=0) {/* loop 2 */ x--; y--; } assert y==0; } First, attempt computation of invariant for loop 2 Iterative invariant generation does not terminate Constraint x=y is important, but not discovered Using x=y as a hint we get two invariants: Loop 2: ¬(y  0  x=0)  ¬(y ≤ 0  x>0)  ¬(y>0  x  y) Loop 1: ¬(x  y  x ≥ n)  ¬(x<0)  ¬(x≥0  x<n  x  y)

31 Related Work Invariant generation: –INVEST (Verimag), STEP (Stanford) –Graf & Saidi (CAV 1996), Havelund & Shankar (FME 1996), Tiwari et al. (TACAS 2001), Wegbreit (CACM 1974) –… (a lot of work) –Iterative forward/backward computations –Domain specific; focus on numeric invariants –Heuristics for termination, e.g. using auxiliary invariants Abstract interpretation –Cousot & Cousot (CAV 2002), Cousot & Halbwachs (POPL 1978) –Widening operator to compute fixpoints systematically Flanagan & Qadeer (POPL 2002) –Loop invariant generation for Java programs –Uses predicate abstraction –Predicates need to be provided by the user Extended Static Checker (ESC) –Uses theorem proving to check partial correctness specifications of Java programs –Rely heavily on user provided specifications, such as loop invariants

32 Conclusion and Future Work Framework for verification of light-weight specifications of Java programs: new use of JPF Iterative technique for discovering (some) loop invariants automatically –Uses invariant strengthening, approximation, and refinement –Handles different types of constraints –Allows checking universally quantified formulas … Very preliminary work Future work: –Instead of dropping newly generated constraints, replace them with an appropriate boolean combination of exiting constraints from U k Similar to predicate abstraction –Use more powerful abstraction techniques in conjunction with our framework –Use heuristics/dynamic methods to discover useful constraints/hints (e.g. Daikon) –Study relationship to widening and predicate abstraction –Extend to multithreading and richer properties –…


Download ppt "Verification of Java Programs using Symbolic Execution and Loop Invariant Generation Corina Pasareanu (Kestrel Technology LLC) Willem Visser (RIACS/USRA)"

Similar presentations


Ads by Google