Download presentation
Presentation is loading. Please wait.
Published byMatthew Nash Modified over 9 years ago
1
Summary C(x) is the cost function C(x)/x is the average cost C’(x) is the marginal cost p(x) is the demand function which is the price per unit if we sell x units. R(x) = xp(x) is the revenue function. R’(x) is the marginal revenue P(x) = R(x) – C(x) is the profit function P’(x) is the marginal profit.
2
ECONOMICS Suppose C(x) is the total cost that a company incurs in producing x units of a certain commodity. The function C is called a cost function.
3
If the number of items produced is increased from x 1 to x 2, then the additional cost is ∆C = C(x 2 ) - C(x 1 ) and the average rate of change of the cost is: AVERAGE RATE
4
The limit of this quantity as ∆x → 0, that is, the instantaneous rate of change of cost with respect to the number of items produced, is called the marginal cost by economists: MARGINAL COST
5
As x often takes on only integer values, it may not make literal sense to let ∆x approach 0. However, we can always replace C(x) by a smooth approximating function—as in Example 6. ECONOMICS
6
Taking ∆x = 1 and n large (so that ∆x is small compared to n), we have: C’(n) ≈ C(n + 1) – C(n) Thus, the marginal cost of producing n units is approximately equal to the cost of producing one more unit [the (n + 1)st unit]. ECONOMICS
7
It is often appropriate to represent a total cost function by a polynomial C(x) = a + bx + cx 2 + dx 3 where a represents the overhead cost (rent, heat, and maintenance) and the other terms represent the cost of raw materials, labor, and so on. ECONOMICS
8
The cost of raw materials may be proportional to x. However, labor costs might depend partly on higher powers of x because of overtime costs and inefficiencies involved in large-scale operations. ECONOMICS
9
For instance, suppose a company has estimated that the cost (in dollars) of producing x items is: C(x) = 10,000 + 5x + 0.01x 2 Then, the marginal cost function is: C’(x) = 5 + 0.02x ECONOMICS
10
The marginal cost at the production level of 500 items is: C’(500) = 5 + 0.02(500) = $15/item This gives the rate at which costs are increasing with respect to the production level when x = 500 and predicts the cost of the 501st item. ECONOMICS
11
The actual cost of producing the 501st item is: C(501) – C(500) = [10,000 + 5(501) + 0.01(501) 2 ] – [10,000 + 5(500) + 0.01(500) 2 ] =$15.01 Notice that C’(500) ≈ C(501) – C(500) ECONOMICS
12
Economists also study marginal demand, marginal revenue, and marginal profit—which are the derivatives of the demand, revenue, and profit functions. ECONOMICS
13
MARGINAL COST FUNCTION Recall that if C(x), the cost function, is the cost of producing x units of a certain product, then the marginal cost is the rate of change of C with respect to x. In other words, the marginal cost function is the derivative, C’(x), of the cost function.
14
DEMAND FUNCTION Now, let’s consider marketing. Let p(x) be the price per unit that the company can charge if it sells x units. Then, p is called the demand function (or price function), and we would expect it to be a decreasing function of x.
15
If x units are sold and the price per unit is p(x), then the total revenue is: R(x) = xp(x) This is called the revenue function. REVENUE FUNCTION
16
The derivative R’ of the revenue function is called the marginal revenue function. It is the rate of change of revenue with respect to the number of units sold. MARGINAL REVENUE FUNCTION
17
If x units are sold, then the total profit is P(x) = R(x) – C(x) and is called the profit function. The marginal profit function is P’, the derivative of the profit function. MARGINAL PROFIT FUNCTION
18
Taking ∆x = 1 and n large C’(n) ≈ C(n + 1) – C(n) Cost of producing the (n+1)st unit R’(n) ≈ R(n + 1) – R(n) Revenue from the (n+1)st unit. P’(n) ≈ P(n + 1) – P(n) Profit from the (n+1)st unit Interpretation of Mariginals
19
Summary C(x) is the cost function C(x)/x is the average cost C’(x) is the marginal cost p(x) is the demand function which is the price per unit if we sell x units. R(x) = xp(x) is the revenue function. R’(x) is the marginal revenue P(x) = R(x) – C(x) is the profit function P’(x) is the marginal profit.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.