Download presentation
Presentation is loading. Please wait.
Published byBelinda Rogers Modified over 9 years ago
1
Design of Front-End Low-Noise and Radiation Tolerant Readout Systems José Pedro Cardoso
2
Overview 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 2 Introduction Training Project Milestones Conclusions
3
Introduction 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 3 “The “GBT Project” is part of the “Radiation Hard Optical Link Project” which aims at developing a radiation hard bi-directional optical link for use in the LHC upgrade programs” ( http://cern.ch/proj-gbt ).http://cern.ch/proj-gbt There is the need to develop new building blocks to meet the requirements of the Front-End electronics of the future experiments. The goal of the project is to design one or more low-noise, radiation tolerant circuits, either in 90 nm or 130 nm CMOS technologies. In the framework of GBT project, a PLL with a very low phase noise will be designed, with built-in self-test blocks. Tape-out of this circuit is foreseen for May 2010
4
Introduction 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 4 Training On-job training Technical Courses Education Doctoral Programme at FEUP Project Low-noise Radiation Tolerant PLL Dissemination Conferences Milestones Important dates for the project
5
Training 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 5 Training Self-training On-Job training Interaction with experts Training
6
01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 6 EPLF Course – “PLLs, VCOs and Frequency Synthesizers“ Ali Hajimiri Modelling and Design of High-Speed VCOs Jitter and Phase Noise in PLLs Michiel Steyaert Low-Power Crystal Oscillators Basic Concepts of PLL Topologies CMOS Prescalers & Advanced Loop Filters Integrated VCOs and Synthesizers Ian Galton Fractional-N PLLs John Cowles High Speed Synthesizers for Communications ESSCIRC 2009 Conference
7
Training 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 7 PhD in Electrical and Computer Engineering Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 1 st semester (2009/2010) Microelectronic and Micro-electro-Mechanical Technologies Test and Design for Testability Digital Communication Systems Seminars 2 nd semester (2011/2012) Advanced Microelectronic Systems Design Instrumentation and Systems Testing Measure Theory and Stochastic Processes Individual Topics Education
8
Project 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 8 Top-level analisys using MatLab IC Design Using Cadence Radiation/ performace tests Project
9
01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 9 Phase Locked Loop – PLL Digital communication of data is affected by noise There is the need to develop circuit that does data recovering The PLL will act as a Jitter-filter, as well as a clock multiplier and can be used in CDR applications. Is a feedback system that generates an output frequency according to a reference. Compares the output and the input phase of two signals Main blocks: Phase-Detector (PD or PFD) Voltage Controlled Oscillator (VCO) Low-Pass Filter (LPF) Divider or Pre-scaler
10
Project 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 10 Phase Locked Loop – PLL Based on QPLL characteristics Crystal frequency = 80.1572 MHz Locking range = 40.0786 MHz ± 8 kHz Output Jitter < 15 ps 130 nm CMOS Technology One frequency multiplication mode: × 2 Power voltage: 1.2 V 10 GHz VCO for High-Speed Transceiver Very low-phase noise characteristics
11
Project 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 11 130 nm CMOS Technology Main focus of this period was the VCO First approach to oscillator design was done with a Colpitts oscillator. Later the cross-coupled pair and a mixture of both. First oscillator designed at schematics level @ 1 GHz Single-ended oscillator @ 10 GHz Differential oscillator @ 10 GHz
12
Project Main concerns for the VCO designer Phase-noise Spurs Variability How can the above effects be minimized ? Phase-noise Phase noise in the 1/f and 1/f 2 regions can be upconverted to close-in regions. Symmetry has a tremendous impact on how AM is converted into PM noise, and can be used by designers. A proper choice of the oscillator’s topology leads us to a better response in terms of phase-noise. Spurs Proper design of charge-pump and filter Variability Tank circuit designed with extra capacitors which can be enabled/disable according to the desired center frequency. 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 12
13
Project 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 13 Main challenges and novelty Design of the VCO Low phase noise Low parasitics Insensitive to process variations Sensitive choice of VCO’s topology Design of several test blocks, that will perform self- test/auto-calibration of the PLL during functioning Determination of the parameters that can be controlled by the test mechanism
14
Project 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 14 What to expect from the circuit ? A low noise PLL Embedded Built-in self-test system Jitter Measuring circuit Automatic Amplitude Control/ Automatic Gain Control Automatic Frequency Control Memory to save the settings of the PLL
15
Milestones 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 15 Milestones
16
Conferences 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 16 Targeted conferences: 2010 PRIME 2010 – July 2010 TWEPP 2010 – September 2010 DCIS 2010 – November 2010 2011 IM3STW 2011– June 2011 DATE 2011– March 2011 ITC 2011– October 2011 Dissemination
17
Conclusions 01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 17 A top-level modelling is being used to analyse and specify the system, prior to design There are two circuits to be developed: Crystal PLL LC VCO for a 10 GHz PLL The final versions will include self-test building blocks Tape-out of the first circuit should be done during May 2010 By September 2010 at least one paper should have been published in one of the conferences
18
01-10-2009Design of Front-End Low-Noise and Radiation Tolerant Readout Systems 18 Thank you for your attention.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.