Download presentation
1
Nuclear Medicine Quality control
2
Uniformity gamma camera
divide by flood source image No correction Energy correction E + Linearity E + L + Flood correctie
3
Uniformity PET camera Uncorrected Corrected sinogram Blank scan
projection Correction: energy uniformity dead time
4
QC gamma camera Whole Body bed motion uniformity pixel size SPECT
Planar uniformity energy resolution linearity spatial resolution dead time sensitivity pixel size Whole Body bed motion uniformity pixel size SPECT center of rotation detector position Phantom
5
dead time straightforward: decaying source
two sources with (nearly) same activity
6
Center of rotation
7
Detector position
8
well counter dose calibrator survey meter
9
well counter NaI(Tl) PMT lead shielding
10
well counter lead shielding NaI(Tl) PMT a H sens = 1 2 1+ 𝐷 𝐷 2 + 𝐻 2
sensitivity
11
gas filled detectors - - - + - applied voltage output current
ionization chamber proportional counter Geiger-Müller - - - + + + - - - + - - -
12
dose calibrator isotope selection
13
dose calibrator - + + - output current = const x air kerma (or Ar kerma) function of isotope energy!
14
dose calibrator with Cu filter
15
survey meters ionisation detector (Xenon)
16
survey meters scintillator (NaI(Tl))
17
contamination monitor, spectrometer
NaI(Tl) scintillation crystal
18
contamination monitor
19
Image analysis
20
SUV: standard uptake value
somewhat controversial only valid if procedure is standard: time between injection and image condition of patient ... used all the time!
21
example: analysis of heart images
22
Image analysis 18F-FDG 13N-NH3
23
perfusion + metabolism
24
Gated PET
25
Partial volume constant activity big pixels
26
Partial volume constant concentration finite resolution
perfect resolution Partial volume constant concentration finite resolution finite resolution Recovery Spill-over
27
Partial volume constant activity finite resolution
28
Gated MIBI, thickening 3 4 2 5 1 6 2 4 6 8 200 400 600 800 1000 7
30
Tracer kinetic modelling
31
Dynamic PET 13N-NH3 perfusion study 20 s. 40 s. 3 min 20 min
32
Dynamic PET 11C-acetate perfusion/oxidative metabolism study
33
Kinetic modelling k3 K1 k2 k4 Extra- Blood Metabolized vascular 0.1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 100 200 300 400 500 0.05 0.1 0.15 0.2 0.25 0.3 100 200 300 400 500
34
3 comp model C’p C’E C’M Glucose: k’3 K’1 k’2 k’4 - metabolized = 0
35
3 comp model Cp CE CM K1 k2 k3 k4 FDG: not metabolized but accumulated
36
Laplace transform
37
3 comp model Cp K1 k3 FDG: CE CM k2
38
3 comp model Lumped constant: Glucose consumption:
39
Motion correction 16 17 15 14 12 13 11 11C-Acetate
40
Tracer kinetic modelling: NH3
0.1 0.2 0.3 0.4 0.5 0.6 0.7 100 200 300 400 500
41
parametric modelling: acetate
42
Image quality
43
Bias and variance A is better than B! more regularisation variance
which method is better? B A bias
44
Software evaluation nice correct image quality is task dependent
simulation, phantom, (animal), clinical
45
Dosimetry
46
Dosimetry Q(photons, electrons, positrons) = 1
Q(neutrons, protons) = Q(a-particles) = 20 MIRD formalism (SNM)
47
effective dose A B
48
L = 4 cm R = 2 cm D = 10 cm d = 2 cm = 0.15 /cm (140 keV) m = /cm (511 keV) 1 MBq 123I: gamma: 0.84 of 159 keV electron: 0.13 of 127 keV halflife: 13 h 1 MBq 18F: 1 positron of 250 keV 109 min
49
dosimetry For organs with uptake: 3D VOIs pixelwise MBq/cc measurement
=> Total organ activity
50
residence times evaluation of tracer for ORL-1 receptors in the brain
Residence time (hr) for the liver: S1: S2: S3: Residence time (hr) for the thyroid: S1: S2: S3: evaluation of tracer for ORL-1 receptors in the brain
51
Olinda: MC-based dosimetry
MIRD Dose Estimate Report No. 19: Radiation Absorbed Dose Estimates from 18F-FDG
52
dosimetry background radiation: ..2.. mSv / year = 5.5 mSv / day
= 0.2 mSv / hour patient: 18F-FDG, 300 MBq 6 mSv 99mTc-MIBI 740 MBq 11 mSv
53
the end
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.