Download presentation
Presentation is loading. Please wait.
Published byMaximilian McBride Modified over 9 years ago
1
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig 1 EECS 527 Paper Presentation High-Performance Global Routing with Fast Overflow Reduction - by Huang-Yu Chen, Chin-Hsiung Hsu, and Yao-Wen Chang Presented by Yaoyu Tao Department Electrical Engineering and Computer Science University of Michigan, Ann Arbor 10/2011
2
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig EECS 527 Paper Presentation Outlines Introduction Problem Formulation Routing Methodology Pre-routing Initial Iterative Monotonic Routing Iterative Forbidden-Region Rip-up/Rerouting (IFR) Layer Assignment Experimental Results Q & A 2
3
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Introduction State-of-the-art routing techniques maze routing A*-search routing pattern routing monotonic routing multi-commodity flow integer linear programming (ILP) Not clear on their capability to handle the upcoming design challenges 3
4
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Introduction State-of-the-art Routers Based on INR (iterative negotiation-based rip-up/rerouting) INR becomes the main stream due to its great ability to spread out congestion as well as to reduce the overflow Lagrange Relaxation (IR) mathematical basis to improve the INR 4
5
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Introduction Developments on this paper New global router - NTUgr, that contains 3 major steps: pre-routing, initial routing and enhanced INR New techniques in pre-routing Congestion-hotspot historical cost pre-increment Small bounding-box area routing Enhanced INR Multiple forbidden regions expansion Critical subnets rerouting selection Look-ahead historical cost increment 5
6
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Problem Formulation Routing & Goal Routing region - partitioned into global cells and a 2D or 3D routing graph composed of nodes (global tile nodes) and edges (global edges) Each global edge is associated with a capacity Objectives of global routing – Minimize the total overflow Prioritized order of ISPD’08 Total overflow Maximum overflow Weighted total wire length 6
7
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Some basics Global tile node & global edge Overflow: the amount of routing demand that exceeds the given capacity 7 Global tile node Global edge Tile Tile boundary
8
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Some basics State-of-the-art INR Proposed in PathFinder [McMurchie and Ebeling, FPGA’95] Spreads the congested wires iteratively At the (i)-th iteration, the cost of a global edge e: b e : base cost of using e, p e : # of nets passing e, h e (i) : historical cost on e, INR may get stuck as the number of iterations increases
9
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology – Flow Chart Flow of the global router Three new techniques 2 nd place of ISPD 2008 Global Routing Contest 9 3D Benchmark 3D 2D capacity mapping Enhanced 2D routing 2D 3D layer assignment 3D routing result Prerouting Initial Routing Iterative Forbidden-region Rip-up/rerouting (IFR)
10
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology - Prerouting 10 3D Benchmark 3D 2D capacity mapping Enhanced 2D routing 2D 3D layer assignment 3D routing result PreroutingPrerouting Initial Routing Iterative Forbidden-region Rip-up/rerouting (IFR)
11
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology - Prerouting Pre-routing Congestion-hotspot Historical Cost Pre-increment Mainly for difficult routing instances, e.g., ISPD’07 newblue3 circuit Handle with high pin density Pre-increment the historical cost h e, in cost function (b e + h e ) ・ p e For ith global edges lying around the high-pin-density tiles before going into the INR procedures Achieve the least 31024 overflows for newblue3 ever in the literature Small Bounding-box Area Routing First route the subnets with smaller bounding-box areas since they have less flexibility 11
12
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology – Initial Iterative Monotonic Routing 12 3D Benchmark 3D 2D capacity mapping Enhanced 2D routing 2D 3D layer assignment 3D routing result Prerouting Initial Routing Iterative Forbidden-region Rip-up/rerouting (IFR)
13
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology – Initial Iterative Monotonic Routing Initial Iterative Monotonic Routing First stage that completes all subnets in the whole chip Monotonic paths: this stage stops when the overflow reduction at the (i+1)-th iteration is less than 5% from the i-th iteration 13
14
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology - IFR 14 3D Benchmark 3D 2D capacity mapping Enhanced 2D routing 2D 3D layer assignment 3D routing result Prerouting Initial Routing Iterative Forbidden-region Rip-up/rerouting (IFR)
15
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology - IFR 15
16
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology - IFR Modified p e in IFR P e is usually set as d e /c e In proposed IFR Multiple Forbidden-Regions Expansion Identify the congested regions, called multiple forbidden regions expansion Forbidden Region: Introducing overflows in this region is almost forbidden, or it would incur huge cost penalty Three phases for multiple forbidden regions construction in IFR 16
17
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology - IFR 17
18
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology - IFR Multiple Forbidden-region Construction at the first phase 18
19
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology - IFR Second Phase Invoked when the number of overflows in the first phase stops decreasing and gets stuck at local optimal solution New technique: Region Propagation Leveling (RPL) “Inherit” all forbidden regions at the previous iterations and then expands these forbidden regions simultaneously Avoids the local optima solutions in the first phase 19
20
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology - IFR Effects of RPL 20
21
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology - IFR Third Phase Starts when the current number of overflows is less than 0.5% of the total overflows after the initial iterative monotonic routing Final expansion – expand the forbidden region to the entire routing graph to quickly reduce the remaining overflows Why? Because INR becomes less effective in reducing the overflows when the total overflows become smaller 21
22
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology - IFR Comparisons of Congested Regions 22 BoxRouterNTHU-Route 1.0NTUgr (Ours) TerminologyBox Congested region Forbidden region ShapeRectangular Rectilinear # of regionsSingle boxSingle regionMultiple regions Objective Performing progressive ILP Selecting rerouting nets Performing different cost functions Simultaneou s expansion No Yes
23
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology – Critical Subnets Rerouting Selection New speed-up scheme into IFR – Critical Subnets rerouting selection Reduce the number of rerouting subnets in each iteration Iterative rip-up/rerouting takes the most run-time, thus the key for speed-up is to reduce the number of rerouting subnets in each iteration Only critical subnets are ripped-up and rerouted in IFR Criterion for a critical subnet n, S is a constant and e is a global edge passed by n In this paper, S is set to be -1 and obtain about 1.21x speedup 23
24
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology – Look-ahead Historical Cost Increment Recall: main advantage of INR is the great ability to spread out congestion (overflows) h e Update scheme for most state-of-the-art routers, where K is a constant, and c e and d e represent the capacity and demand of e Conventional algorithm gets stuck in local optima solutions Why? Because it performs less effective as the number of iterations increases and cannot minimize the overflows but just exchange the overflow regions instead 24
25
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Routing Methodology – Look-ahead Historical Cost Increment & Layer Assignment New updating scheme N > o represents a positive integer Not only increase the historical cost on the global edges with overflows, but also on those near-overflow global edges In this paper, N = K = 1, improves the quality of the router Layer Assignment: 2-D to 3-D in non-decreasing order of their wire length In this paper, layer assignment prefers the wire and via sharing 25
26
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Experimental Results NTUgr in C++ on 2.8GHz AMD Opteron Linux workstation with 12 GB memory Comparisons with state-of-the-art global routers in literature ISPD’07 and ISPD’08 Proposed NTUgr obtains the best routing solutions for the most difficult instance, newblue3 (with only 31024 overflows) and newblue4 (with only 142 overflows) High-quality results for the ISPD’07 and ISPD’08 benchmarks for both overflow and runtime 26
27
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Experimental Results Achieved 1.94X speed up and better overflow reduction with similar total wire length 27
28
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Experimental Results 3-D ISPD’07 Results 28
29
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig Experimental Results 3-D ISPD’08 Results 29 The best solution in the literature!
30
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig EECS 527 Paper Presentation Thanks! Q & A 30
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.