Download presentation
Presentation is loading. Please wait.
Published byKerrie Walton Modified over 9 years ago
1
Sorting
2
Introduction Common problem: sort a list of values, starting from lowest to highest. List of exam scores Words of dictionary in alphabetical order Students names listed alphabetically Student records sorted by ID# Generally, we are given a list of records that have keys. These keys are used to define an ordering of the items in the list.
3
C++ Implementation of Sorting Use C++ templates to implement a generic sorting function. This would allow use of the same function to sort items of any class. However, class to be sorted must provide the following overloaded operators: Assignment: = Ordering: >, <, == Example class: C++ STL string class In this lecture, we’ll talk about sorting integers; however, the algorithms are general and can be applied to any class as described above.
4
Quadratic Sorting Algorithms We are given n records to sort. There are a number of simple sorting algorithms whose worst and average case performance is quadratic O(n 2 ): Selection sort Insertion sort Bubble sort
5
Sorting an Array of Integers Example: we are given an array of six integers that we want to sort from smallest to largest [0] [1] [2] [3] [4] [5]
6
The Selection Sort Algorithm Start by finding the smallest entry. [0] [1] [2] [3] [4] [5]
7
The Selection Sort Algorithm Swap the smallest entry with the first entry. [0] [1] [2] [3] [4] [5]
8
The Selection Sort Algorithm Swap the smallest entry with the first entry. [0] [1] [2] [3] [4] [5]
9
The Selection Sort Algorithm Part of the array is now sorted. Sorted side Unsorted side [0] [1] [2] [3] [4] [5]
10
The Selection Sort Algorithm Find the smallest element in the unsorted side. Sorted side Unsorted side [0] [1] [2] [3] [4] [5]
11
The Selection Sort Algorithm Swap with the front of the unsorted side. Sorted side Unsorted side [0] [1] [2] [3] [4] [5]
12
The Selection Sort Algorithm We have increased the size of the sorted side by one element. Sorted side Unsorted side [0] [1] [2] [3] [4] [5]
13
The Selection Sort Algorithm The process continues... Sorted side Unsorted side Smallest from unsorted Smallest from unsorted [0] [1] [2] [3] [4] [5]
14
The Selection Sort Algorithm The process continues... Sorted side Unsorted side [0] [1] [2] [3] [4] [5] Swap with front Swap with front
15
The Selection Sort Algorithm The process continues... Sorted side Unsorted side Sorted side is bigger Sorted side is bigger [0] [1] [2] [3] [4] [5]
16
The Selection Sort Algorithm The process keeps adding one more number to the sorted side. The sorted side has the smallest numbers, arranged from small to large. Sorted side Unsorted side [0] [1] [2] [3] [4] [5]
17
The Selection Sort Algorithm We can stop when the unsorted side has just one number, since that number must be the largest number. [0] [1] [2] [3] [4] [5] Sorted side Unsorted side
18
The Selection Sort Algorithm The array is now sorted. We repeatedly selected the smallest element, and moved this element to the front of the unsorted side. [0] [1] [2] [3] [4] [5]
19
template void selection_sort(Item data[ ], size_t n) { size_t i, j, smallest; Item temp; if(n < 2) return; // nothing to sort!! for(i = 0; i < n-1 ; ++i) { // find smallest in unsorted part of array smallest = i; for(j = i+1; j < n; ++j) if(data[smallest] > data[j]) smallest = j; // put it at front of unsorted part of array (swap) temp = data[i]; data[i] = data[smallest]; data[smallest] = temp; }
20
Selection Time Sort Analysis In O-notation, what is: Worst case running time for n items? Average case running time for n items? Steps of algorithm: for i = 1 to n-1 find smallest key in unsorted part of array swap smallest item to front of unsorted array decrease size of unsorted array by 1
21
Selection Time Sort Analysis In O-notation, what is: Worst case running time for n items? Average case running time for n items? Steps of algorithm: for i = 1 to n-1 O(n) find smallest key in unsorted part of array O(n) swap smallest item to front of unsorted array decrease size of unsorted array by 1 Selection sort analysis: O(n 2 )
22
template void selection_sort(Item data[ ], size_t n) { size_t i, j, smallest; Item temp; if(n < 2) return; // nothing to sort!! for(i = 0; i < n-1 ; ++i) { // find smallest in unsorted part of array smallest = i; for(j = i+1; j < n; ++j) if(data[smallest] > data[j]) smallest = j; // put it at front of unsorted part of array (swap) temp = data[i]; data[i] = data[smallest]; data[smallest] = temp; } Outer loop: O(n)
23
template void selection_sort(Item data[ ], size_t n) { size_t i, j, smallest; Item temp; if(n < 2) return; // nothing to sort!! for(i = 0; i < n-1 ; ++i) { // find smallest in unsorted part of array smallest = i; for(j = i+1; j < n; ++j) if(data[smallest] > data[j]) smallest = j; // put it at front of unsorted part of array (swap) temp = data[i]; data[i] = data[smallest]; data[smallest] = temp; } Outer loop: O(n) Inner loop: O(n)
24
The Insertion Sort Algorithm The Insertion Sort algorithm also views the array as having a sorted side and an unsorted side. [0] [1] [2] [3] [4] [5]
25
The Insertion Sort Algorithm The sorted side starts with just the first element, which is not necessarily the smallest element. [0] [1] [2] [3] [4] [5] Sorted side Unsorted side
26
The Insertion Sort Algorithm The sorted side grows by taking the front element from the unsorted side... [0] [1] [2] [3] [4] [5] Sorted side Unsorted side
27
The Insertion Sort Algorithm...and inserting it in the place that keeps the sorted side arranged from small to large. [0] [1] [2] [3] [4] [5] Sorted side Unsorted side
28
The Insertion Sort Algorithm [0] [1] [2] [3] [4] [5] Sorted side Unsorted side
29
The Insertion Sort Algorithm Sometimes we are lucky and the new inserted item doesn't need to move at all. [0] [1] [2] [3] [4] [5] Sorted side Unsorted side
30
The Insertion Sort Algorithm Sometimes we are lucky twice in a row. [0] [1] [2] [3] [4] [5] Sorted side Unsorted side
31
How to Insert One Element ¶ Copy the new element to a separate location. [0] [1] [2] [3] [4] [5] Sorted side Unsorted side
32
How to Insert One Element · Shift elements in the sorted side, creating an open space for the new element. [0] [1] [2] [3] [4] [5]
33
How to Insert One Element · Shift elements in the sorted side, creating an open space for the new element. [0] [1] [2] [3] [4] [5]
34
How to Insert One Element · Continue shifting elements... [0] [1] [2] [3] [4] [5]
35
How to Insert One Element · Continue shifting elements... [0] [1] [2] [3] [4] [5]
36
How to Insert One Element ·...until you reach the location for the new element. [0] [1] [2] [3] [4] [5]
37
How to Insert One Element ¸ Copy the new element back into the array, at the correct location. [0] [1] [2] [3] [4] [5] Sorted side Unsorted side
38
How to Insert One Element The last element must also be inserted. Start by copying it... [0] [1] [2] [3] [4] [5] Sorted side Unsorted side
39
Sorted Result [0] [1] [2] [3] [4] [5]
40
template void insertion_sort(Item data[ ], size_t n) { size_t i, j; Item temp; if(n < 2) return; // nothing to sort!! for(i = 1; i < n; ++i) { // take next item at front of unsorted part of array // and insert it in appropriate location in sorted part of array temp = data[i]; for(j = i; data[j-1] > temp and j > 0; --j) data[j] = data[j-1]; // shift element forward data[j] = temp; }
41
Insertion Sort Time Analysis In O-notation, what is: Worst case running time for n items? Average case running time for n items? Steps of algorithm: for i = 1 to n-1 take next key from unsorted part of array insert in appropriate location in sorted part of array: for j = i down to 0, shift sorted elements to the right if key > key[i] increase size of sorted array by 1
42
Insertion Sort Time Analysis In O-notation, what is: Worst case running time for n items? Average case running time for n items? Steps of algorithm: for i = 1 to n-1 take next key from unsorted part of array insert in appropriate location in sorted part of array: for j = i down to 0, shift sorted elements to the right if key > key[i] increase size of sorted array by 1 Outer loop: O(n)
43
Insertion Sort Time Analysis In O-notation, what is: Worst case running time for n items? Average case running time for n items? Steps of algorithm: for i = 1 to n-1 take next key from unsorted part of array insert in appropriate location in sorted part of array: for j = i down to 0, shift sorted elements to the right if key > key[i] increase size of sorted array by 1 Outer loop: O(n) Inner loop: O(n)
44
template void insertion_sort(Item data[ ], size_t n) { size_t i, j; Item temp; if(n < 2) return; // nothing to sort!! for(i = 1; i < n; ++i) { // take next item at front of unsorted part of array // and insert it in appropriate location in sorted part of array temp = data[i]; for(j = i; data[j-1] > temp and j > 0; --j) data[j] = data[j-1]; // shift element forward data[j] = temp; } O(n)
45
The Bubble Sort Algorithm The Bubble Sort algorithm looks at pairs of entries in the array, and swaps their order if needed. [0] [1] [2] [3] [4] [5]
46
The Bubble Sort Algorithm The Bubble Sort algorithm looks at pairs of entries in the array, and swaps their order if needed. [0] [1] [2] [3] [4] [5] Swap?
47
The Bubble Sort Algorithm The Bubble Sort algorithm looks at pairs of entries in the array, and swaps their order if needed. [0] [1] [2] [3] [4] [5] Yes!
48
The Bubble Sort Algorithm The Bubble Sort algorithm looks at pairs of entries in the array, and swaps their order if needed. [0] [1] [2] [3] [4] [5] Swap?
49
The Bubble Sort Algorithm The Bubble Sort algorithm looks at pairs of entries in the array, and swaps their order if needed. [0] [1] [2] [3] [4] [5] No.
50
The Bubble Sort Algorithm The Bubble Sort algorithm looks at pairs of entries in the array, and swaps their order if needed. [0] [1] [2] [3] [4] [5] Swap?
51
The Bubble Sort Algorithm The Bubble Sort algorithm looks at pairs of entries in the array, and swaps their order if needed. [0] [1] [2] [3] [4] [5] No.
52
The Bubble Sort Algorithm The Bubble Sort algorithm looks at pairs of entries in the array, and swaps their order if needed. [0] [1] [2] [3] [4] [5] Swap?
53
The Bubble Sort Algorithm The Bubble Sort algorithm looks at pairs of entries in the array, and swaps their order if needed. [0] [1] [2] [3] [4] [5] Yes!
54
The Bubble Sort Algorithm The Bubble Sort algorithm looks at pairs of entries in the array, and swaps their order if needed. [0] [1] [2] [3] [4] [5] Swap?
55
The Bubble Sort Algorithm The Bubble Sort algorithm looks at pairs of entries in the array, and swaps their order if needed. [0] [1] [2] [3] [4] [5] Yes!
56
The Bubble Sort Algorithm Repeat. [0] [1] [2] [3] [4] [5] Swap? No.
57
The Bubble Sort Algorithm Repeat. [0] [1] [2] [3] [4] [5] Swap? No.
58
The Bubble Sort Algorithm Repeat. [0] [1] [2] [3] [4] [5] Swap? Yes.
59
The Bubble Sort Algorithm Repeat. [0] [1] [2] [3] [4] [5] Swap? Yes.
60
The Bubble Sort Algorithm Repeat. [0] [1] [2] [3] [4] [5] Swap? Yes.
61
The Bubble Sort Algorithm Repeat. [0] [1] [2] [3] [4] [5] Swap? Yes.
62
The Bubble Sort Algorithm Repeat. [0] [1] [2] [3] [4] [5] Swap? No.
63
The Bubble Sort Algorithm Loop over array n-1 times, swapping pairs of entries as needed. [0] [1] [2] [3] [4] [5] Swap? No.
64
The Bubble Sort Algorithm Loop over array n-1 times, swapping pairs of entries as needed. [0] [1] [2] [3] [4] [5] Swap? Yes.
65
The Bubble Sort Algorithm Loop over array n-1 times, swapping pairs of entries as needed. [0] [1] [2] [3] [4] [5] Swap? Yes.
66
The Bubble Sort Algorithm Loop over array n-1 times, swapping pairs of entries as needed. [0] [1] [2] [3] [4] [5] Swap? Yes.
67
The Bubble Sort Algorithm Loop over array n-1 times, swapping pairs of entries as needed. [0] [1] [2] [3] [4] [5] Swap? Yes.
68
The Bubble Sort Algorithm Loop over array n-1 times, swapping pairs of entries as needed. [0] [1] [2] [3] [4] [5] Swap? No.
69
The Bubble Sort Algorithm Loop over array n-1 times, swapping pairs of entries as needed. [0] [1] [2] [3] [4] [5] Swap? No.
70
The Bubble Sort Algorithm Continue looping, until done. [0] [1] [2] [3] [4] [5] Swap? Yes.
71
template void bubble_sort(Item data[ ], size_t n) { size_t i, j; Item temp; if(n < 2) return; // nothing to sort!! for(i = 0; i < n-1; ++i) { for(j = 0; j < n-1;++j) if(data[j] > data[j+1]) // if out of order, swap! { temp = data[j]; data[j] = data[j+1]; data[j+1] = temp; }
72
template void bubble_sort(Item data[ ], size_t n) { size_t i, j; Item temp; bool swapped = true; if(n < 2) return; // nothing to sort!! for(i = 0; swapped and i < n-1; ++i) {// if no elements swapped in an iteration, // then elements are in order: done! for(swapped = false, j = 0; j < n-1;++j) if(data[j] > data[j+1]) // if out of order, swap! { temp = data[j]; data[j] = data[j+1]; data[j+1] = temp; swapped = true; }
73
Bubble Sort Time Analysis In O-notation, what is: Worst case running time for n items? Average case running time for n items? Steps of algorithm: for i = 0 to n-1 for j =0 to n-2 if key[j] > key[j+1] then swap if no elements swapped in this pass through array, done. otherwise, continue
74
Bubble Sort Time Analysis In O-notation, what is: Worst case running time for n items? Average case running time for n items? Steps of algorithm: for i = 0 to n-1 for j =0 to n-2 if key[j] > key[j+1] then swap if no elements swapped in this pass through array, done. otherwise, continue O(n)
75
Selection Sort, Insertion Sort, and Bubble Sort all have a worst-case time of O(n 2 ), making them impractical for large arrays. But they are easy to program, easy to debug. Insertion Sort also has good performance when the array is nearly sorted to begin with. But more sophisticated sorting algorithms are needed when good performance is needed in all cases for large arrays. Next time: Merge Sort, Quick Sort, and Radix Sort. Timing and Other Issues Timing and Other Issues
76
Mergesort and Quicksort
77
Sorting algorithms Insertion, selection and bubble sort have quadratic worst-case performance The faster comparison based algorithm ? O(nlogn) Mergesort and Quicksort
78
Sorting Algorithms and Average Case Number of Comparisons Simple Sorts Straight Selection Sort Bubble Sort Insertion Sort More Complex Sorts Quick Sort Merge Sort Heap Sort O(N 2 ) O(N*log N) 78
79
79 Heap Sort Approach First, make the unsorted array into a heap by satisfying the order property. Then repeat the steps below until there are no more unsorted elements. l Take the root (maximum) element off the heap by swapping it into its correct place in the array at the end of the unsorted elements. l Reheap the remaining unsorted elements. (This puts the next-largest element into the root position).
80
80 After creating the original heap [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] 70 60 12 40 30 8 10 values 70 0 60 1 40 3 30 4 12 2 8 5 root 10 6
81
81 Swap root element into last place in unsorted array [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] 70 60 12 40 30 8 10 values 70 0 60 1 40 3 30 4 12 2 8 5 root 10 6
82
82 After swapping root element into its place [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 10 0 60 1 40 3 30 4 12 2 8 5 root 70 6 10 60 12 40 30 8 70 NO NEED TO CONSIDER AGAIN
83
83 After reheaping remaining unsorted elements [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 60 0 40 1 10 3 30 4 12 2 8 5 root 70 6 60 40 12 10 30 8 70
84
84 Swap root element into last place in unsorted array [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 60 0 40 1 10 3 30 4 12 2 8 5 root 70 6 60 40 12 10 30 8 70
85
85 After swapping root element into its place [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 8 0 40 1 10 3 30 4 12 2 root 70 6 8 40 12 10 30 60 70 NO NEED TO CONSIDER AGAIN 60 5
86
86 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 40 0 30 1 10 3 6 4 12 2 root 70 6 40 30 12 10 6 60 70 60 5 After reheaping remaining unsorted elements
87
87 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 40 0 30 1 10 3 6 4 12 2 root 70 6 40 30 12 10 6 60 70 60 5 Swap root element into last place in unsorted array
88
88 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 6 0 30 1 10 3 12 2 root 70 6 60 5 After swapping root element into its place 40 4 6 30 12 10 40 60 70 NO NEED TO CONSIDER AGAIN
89
89 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 30 0 10 1 6 3 12 2 root 70 6 60 5 40 4 30 10 12 6 40 60 70 After reheaping remaining unsorted elements
90
90 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 30 0 10 1 6 3 12 2 root 70 6 60 5 40 4 30 10 12 6 40 60 70 Swap root element into last place in unsorted array
91
91 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 6 0 10 1 12 2 root 70 6 60 5 40 4 After swapping root element into its place 6 10 12 30 40 60 70 30 3 NO NEED TO CONSIDER AGAIN
92
92 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 12 0 10 1 6 2 root 70 6 60 5 40 4 12 10 6 30 40 60 70 30 3 After reheaping remaining unsorted elements
93
93 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 12 0 10 1 6 2 root 70 6 60 5 40 4 12 10 6 30 40 60 70 30 3 Swap root element into last place in unsorted array
94
94 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 6 0 10 1 root 70 6 60 5 40 4 30 3 After swapping root element into its place NO NEED TO CONSIDER AGAIN 12 2 6 10 12 30 40 60 70
95
95 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 10 0 6 1 root 70 6 60 5 40 4 30 3 12 2 10 6 12 30 40 60 70 After reheaping remaining unsorted elements
96
96 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values 10 0 6 1 root 70 6 60 5 40 4 30 3 12 2 10 6 12 30 40 60 70 Swap root element into last place in unsorted array
97
97 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] values root 70 6 60 5 40 4 30 3 12 2 After swapping root element into its place 6 10 12 30 40 60 70 10 1 6 0 ALL ELEMENTS ARE SORTED
98
template void HeapSort ( ItemType values [ ], int numValues ) // Post: Sorts array values[ 0.. numValues-1 ] into ascending // order by key { int index ; // Convert array values[ 0.. numValues-1 ] into a heap. for ( index = numValues/2 - 1 ; index >= 0 ; index-- ) ReheapDown ( values, index, numValues - 1 ) ; // Sort the array. for ( index = numValues - 1 ; index >= 1 ; index-- ) { Swap ( values [0], values [index] ); ReheapDown ( values, 0, index - 1 ) ; } 98
99
99 Heap Sort: How many comparisons? 24 0 60 1 30 3 40 4 12 2 8 5 root 10 6 15 7 6 8 18 9 In reheap down, an element is compared with its 2 children (and swapped with the larger). But only one element at each level makes this comparison, and a complete binary tree with N nodes has only O(log 2 N) levels. 70 10
100
Merge Sort Apply divide-and-conquer to sorting problem Problem: Given n elements, sort elements into non-decreasing order Divide-and-Conquer: If n=1 terminate (every one-element list is already sorted) If n>1, partition elements into two or more sub- collections; sort each; combine into a single sorted list How do we partition?
101
Partitioning - Choice 1 First n-1 elements into set A, last element set B Sort A using this partitioning scheme recursively B already sorted Combine A and B using method Insert() (= insertion into sorted array) Leads to recursive version of InsertionSort() Number of comparisons: O(n 2 ) Best case = n-1 Worst case =
102
Partitioning - Choice 2 Put element with largest key in B, remaining elements in A Sort A recursively To combine sorted A and B, append B to sorted A Use Max() to find largest element recursive SelectionSort() Use bubbling process to find and move largest element to right-most position recursive BubbleSort() All O(n 2 )
103
Partitioning - Choice 3 Let’s try to achieve balanced partitioning A gets n/2 elements, B gets rest half Sort A and B recursively Combine sorted A and B using a process called merge, which combines two sorted lists into one How? We will see soon
104
Example Partition into lists of size n/2 [10, 4, 6, 3] [10, 4, 6, 3, 8, 2, 5, 7] [8, 2, 5, 7] [10, 4] [6, 3] [8, 2] [5, 7] [4] [10] [3][6] [2][8] [5][7]
105
Example Cont’d Merge [3, 4, 6, 10] [2, 3, 4, 5, 6, 7, 8, 10 ] [2, 5, 7, 8] [4, 10] [3, 6] [2, 8] [5, 7] [4] [10] [3][6] [2][8] [5][7]
106
Static Method mergeSort() void mergeSort(Comparable []a, int left, int right) { // sort a[left:right] if (left < right) {// at least two elements int mid = (left+right)/2; //midpoint mergeSort(a, left, mid); mergeSort(a, mid + 1, right); merge(a, b, left, mid, right); //merge from a to b copy(b, a, left, right); //copy result back to a }
107
Merge Function
108
Evaluation Recurrence equation: Assume n is a power of 2 c 1 if n=1 T(n) = 2T(n/2) + c 2 n if n>1, n=2 k
109
Solution By Substitution: T(n) = 2T(n/2) + c 2 n T(n/2) = 2T(n/4) + c 2 n/2 T(n) = 4T(n/4) + 2 c 2 n T(n) = 8T(n/8) + 3 c 2 n T(n) = 2 i T(n/2 i ) + ic 2 n Assuming n = 2 k, expansion halts when we get T(1) on right side; this happens when i=k T(n) = 2 k T(1) + kc 2 n Since 2 k =n, we know k=logn; since T(1) = c 1, we get T(n) = c 1 n + c 2 nlogn; thus an upper bound for T mergeSort (n) is O(nlogn)
110
Quicksort Algorithm Given an array of n elements (e.g., integers): If array only contains one element, return Else pick one element to use as pivot. Partition elements into two sub-arrays: Elements less than or equal to pivot Elements greater than pivot Quicksort two sub-arrays Return results
111
Example We are given array of n integers to sort: 402010806050730100
112
Pick Pivot Element There are a number of ways to pick the pivot element. In this example, we will use the first element in the array: 402010806050730100
113
Partitioning Array Given a pivot, partition the elements of the array such that the resulting array consists of: 1. One sub-array that contains elements >= pivot 2. Another sub-array that contains elements < pivot The sub-arrays are stored in the original data array. Partitioning loops through, swapping elements below/above pivot.
114
402010806050730100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
115
402010806050730100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index
116
402010806050730100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index
117
402010806050730100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index
118
402010806050730100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index
119
402010806050730100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index
120
402010806050730100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
121
402010306050780100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
122
402010306050780100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1.
123
402010306050780100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1.
124
402010306050780100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1.
125
402010306050780100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1.
126
402010306050780100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1.
127
402010306050780100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1.
128
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 402010307506080100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
129
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 402010307506080100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
130
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 402010307506080100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
131
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 402010307506080100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
132
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 402010307506080100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
133
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 402010307506080100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
134
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 402010307506080100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
135
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 402010307506080100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
136
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 402010307506080100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
137
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 5.Swap data[too_small_index] and data[pivot_index] 402010307506080100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
138
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 5.Swap data[too_small_index] and data[pivot_index] 720103040506080100 pivot_index = 4 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
139
Partition Result 720103040506080100 [0] [1] [2] [3] [4] [5] [6] [7] [8] <= data[pivot]> data[pivot]
140
Recursion: Quicksort Sub- arrays 720103040506080100 [0] [1] [2] [3] [4] [5] [6] [7] [8] <= data[pivot]> data[pivot]
141
Quicksort Analysis Assume that keys are random, uniformly distributed. What is best case running time?
142
Quicksort Analysis Assume that keys are random, uniformly distributed. What is best case running time? Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array
143
Quicksort Analysis Assume that keys are random, uniformly distributed. What is best case running time? Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array Depth of recursion tree?
144
Quicksort Analysis Assume that keys are random, uniformly distributed. What is best case running time? Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array Depth of recursion tree? O(log 2 n)
145
Quicksort Analysis Assume that keys are random, uniformly distributed. What is best case running time? Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array Depth of recursion tree? O(log 2 n) Number of accesses in partition?
146
Quicksort Analysis Assume that keys are random, uniformly distributed. What is best case running time? Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array Depth of recursion tree? O(log 2 n) Number of accesses in partition? O(n)
147
Quicksort Analysis Assume that keys are random, uniformly distributed. Best case running time: O(n log 2 n)
148
Quicksort Analysis Assume that keys are random, uniformly distributed. Best case running time: O(n log 2 n) Worst case running time?
149
Quicksort: Worst Case Assume first element is chosen as pivot. Assume we get array that is already in order: 24101213505763100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
150
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 5.Swap data[too_small_index] and data[pivot_index] 24101213505763100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_indextoo_small_index
151
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 5.Swap data[too_small_index] and data[pivot_index] 24101213505763100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_indextoo_small_index
152
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 5.Swap data[too_small_index] and data[pivot_index] 24101213505763100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_indextoo_small_index
153
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 5.Swap data[too_small_index] and data[pivot_index] 24101213505763100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_indextoo_small_index
154
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 5.Swap data[too_small_index] and data[pivot_index] 24101213505763100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_indextoo_small_index
155
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 5.Swap data[too_small_index] and data[pivot_index] 24101213505763100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_indextoo_small_index
156
1.While data[too_big_index] <= data[pivot] ++too_big_index 2.While data[too_small_index] > data[pivot] --too_small_index 3.If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4.While too_small_index > too_big_index, go to 1. 5.Swap data[too_small_index] and data[pivot_index] 24101213505763100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] > data[pivot]<= data[pivot]
157
Quicksort Analysis Assume that keys are random, uniformly distributed. Best case running time: O(n log 2 n) Worst case running time? Recursion: 1. Partition splits array in two sub-arrays: one sub-array of size 0 the other sub-array of size n-1 2. Quicksort each sub-array Depth of recursion tree?
158
Quicksort Analysis Assume that keys are random, uniformly distributed. Best case running time: O(n log 2 n) Worst case running time? Recursion: 1. Partition splits array in two sub-arrays: one sub-array of size 0 the other sub-array of size n-1 2. Quicksort each sub-array Depth of recursion tree? O(n)
159
Quicksort Analysis Assume that keys are random, uniformly distributed. Best case running time: O(n log 2 n) Worst case running time? Recursion: 1. Partition splits array in two sub-arrays: one sub-array of size 0 the other sub-array of size n-1 2. Quicksort each sub-array Depth of recursion tree? O(n) Number of accesses per partition?
160
Quicksort Analysis Assume that keys are random, uniformly distributed. Best case running time: O(n log 2 n) Worst case running time? Recursion: 1. Partition splits array in two sub-arrays: one sub-array of size 0 the other sub-array of size n-1 2. Quicksort each sub-array Depth of recursion tree? O(n) Number of accesses per partition? O(n)
161
Quicksort Analysis Assume that keys are random, uniformly distributed. Best case running time: O(n log 2 n) Worst case running time: O(n 2 )!!!
162
Quicksort Analysis Assume that keys are random, uniformly distributed. Best case running time: O(n log 2 n) Worst case running time: O(n 2 )!!! What can we do to avoid worst case?
163
Improved Pivot Selection Pick median value of three elements from data array: data[0], data[n/2], and data[n-1]. Use this median value as pivot.
164
Improving Performance of Quicksort Improved selection of pivot. For sub-arrays of size 3 or less, apply brute force search: Sub-array of size 1: trivial Sub-array of size 2: if(data[first] > data[second]) swap them
165
Radix Sort Limit input to fixed-length numbers or words. Represent symbols in some base b. Each input has exactly d “digits”. Sort numbers d times, using 1 digit as key. Must sort from least-significant to most-significant digit. Must use any “stable” sort, keeping equal-keyed items in same order.
166
Radix Sort Example ababaccaaacbbabccabbaaac Input data:
167
Radix Sort Example ababaccaaacbbabccabbaaac Input data: abc Pass 1: Looking at rightmost position.
168
Radix Sort Example aba baccaaacbbabccabbaaac Input data: abc Place into appropriate pile.
169
Radix Sort Example ababac caaacbbabccabbaaac Input data: abc Place into appropriate pile.
170
Radix Sort Example ababac caa acbbabccabbaaac Input data: abc Place into appropriate pile.
171
Radix Sort Example ababac caa acb babccabbaaac Input data: abc Place into appropriate pile.
172
Radix Sort Example ababac caa acb bab cca bba aac Input data: abc Place into appropriate pile.
173
Radix Sort Example ababaccaaacbbabccabbaaac abc Join piles. Pass 2 looks at next position.
174
Radix Sort Example aba bac caa acb bab cca bba aac abc Place into appropriate pile.
175
Radix Sort Example abc Join piles. Pass 3 looks at next position. baccaababaacababbaacbcca
176
Radix Sort Example abc Join piles. Pass 3 looks at next position. bac caababaac aba bbaacb cca
177
Radix Sort Example abc Join piles. baccaababaacababbaacbcca
178
Radix Sort Algorithm rsort(A,n): for d := 0 to n-1 /* Stable sort A, using digit position d as the key. */ for i := 1 to |A| add A[i] to end of list ((A[i]>>d) mod b) A = join lists 0..b-1 (dn) time, where d is taken to be a constant.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.