Download presentation
Presentation is loading. Please wait.
Published byRebecca Lynch Modified over 9 years ago
1
FASTER SORTING using RECURSION : QUICKSORT COMP 103
2
2 RECAP-TODAY TODAY MergeSort analysis (How do you analyse recursive algorithms?) QuickSort The Mid-term Test on Monday 30 th of April at 11am (during normal lecture slot) THE ROOMS ARE ANNOUNCED ON THE WEB SITE!!! please bring Student ID card, sit in alternate rows & alternate seats practice on previous tests (via “previous tests & exams” on sidebar) any material up to this point (end of today) could be tested GOOD LUCK!
3
3 Divide and Conquer Sorts To Sort: Split Sort each part (recursive) Combine Where does the work happen ? MergeSort: split is trivial combine does all the work QuickSort: split does all the work combine is trivial Array Sorted Array Split Combine SubArray SortedSubArray Sort Split Combine SubArray Sort SortedSubArray Split Combine SubArray Sort SortedSubArray
4
4 QuickSort uses Divide and Conquer, but does its work in the “split” step split the array into parts, by choosing a “pivot” item, and making sure that: all items < pivot are in the left part all items > pivot are in the right part Then (recursively) sort each part Here's how we start it off: public static void quickSort( E[] data, int size, Comparator comp) { quickSort (data, 0, size, comp); } “wrapper” version starts it off recursive version carries it on (and on...) note: it won’t usually be an equal split
5
5 QuickSort – the recursion public static void quickSort(E[ ] data, int low, int high, Comparator comp){ if (high-low < 2) // only one item to sort. return; if (high - low < 4) // only two or three items to sort. sort3(data, low, high, comp); else { // split into two parts, mid = index of boundary int mid = partition(data, low, high, comp); quickSort(data, low, mid, comp); quickSort(data, mid, high, comp); } 67891011012345
6
6 QuickSort: Partition Choose a pivot: 67891011012345 pivot 67891011012345 pivot Use it to partition the array: low high left (gets returned) not yet sorted
7
7 QuickSort: Partition /** Partition into small items (low..mid-1) and large items (mid..high-1) private static int partition(E[] data, int low, int high, Comparator comp){ E pivot = int left = low-1; int right = high; while( left <= right ){ do { left++; // just skip over items on the left < pivot } while (left<high &&comp.compare(data[left], pivot)< 0); do { right--; // just skip over items on the right > pivot } while (right>=low && comp.compare(data[right], pivot)> 0); if (left < right) swap(data, left, right); } return left; } 67891011012345 data[low];// simple but poor choice! median(data[low], data[high-1], data[(low+high)/2], comp);
8
8 QuickSort data array : [p a1 r f e q2 w q1 t z2 x c v b z1 a2 ] indexes : [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ] do 0..16 : [p a1 r f e q2 w q1 t z2 x c v b z1 a2 ] part@ p ->6 : [a2 a1 b f e c w q1 t z2 x q2 v r z1 p ] do 0..6 : [a2 a1 b f e c ] part@ c ->4 : [a2 a1 b c e f ] do 0..4 : [a2 a1 b c ] part@ b ->3 : [a2 a1 b c ] do 0..3 : [a2 a1 b ] done 0..3 : [a2 a1 b ] do 3..4 : [ c ] done 0..4 : [a2 a1 b c ] do 4..6 : [ e f ] done 4..6 : [ e f ] done 0..6 : [a2 a1 b c e f ] do 6..16 : [ w q1 t z2 x q2 v r z1 p ] part@ q2 ->8 : [ p q2 t z2 x q1 v r z1 w ] do 6..8 : [ p q2 ] done 6..8 : [ p q2 ]
9
9 Quick Sort do 6..16 : [ w q1 t z2 x q2 v r z1 p ] part@q2->8 : [ p q2 t z2 x q1 v r z1 w ] do 6..8 : [ p q2 ] done 6..8 : [ p q2 ] do 8..16 : [ t z2 x q1 v r z1 w ] part@v ->12: [ t r v q1 x z2 z1 w ] do 8..12 : [ t r v q1 ] part@t ->10: [ q1 r v t ] do 8..10 : [ q1 r ] done 8..10 : [ q1 r ] do 10..12: [ v t ] done 10..12: [ t v ] done 8..12 : [ q1 r t v ] do 12..16: [ x z2 z1 w ] part@x ->13: [ w z2 z1 x ] do 12..13: [ w ] do 13..16: [ z2 z1 x ] done 13..16: [ x z2 z1 ] done 12..16: [ w x z2 z1 ] done 8..16 : [ q1 r t v w x z2 z1 ] done 6..16 : [ p q2 q1 r t v w x z2 z1 ] done 0..16 : [a2 a1 b c e f p q2 q1 r t v w x z2 z1 ]
10
10 QuickSort public static void quickSort (E[ ] data, int low, int high, Comparator comp) { if (high > low +2) { int mid = partition(data, low, high, comp); quickSort(data, low, mid, comp); quickSort(data, mid, high, comp); } } Cost of Quick Sort: three steps: partition: has to compare (high-low) pairs first recursive call second recursive call
11
11 QuickSort Cost: If Quicksort divides the array exactly in half, then: C(n) = n + 2 C(n/2) n log(n) comparisons = O(n log(n)) (best case) If Quicksort divides the array into 1 and n-1: C(n) = n + (n-1) + (n-2) + (n-3) + … + 2 + 1 = n(n-1)/2 comparisons = O(n 2 ) (worst case) Average case ? very hard to analyse. still O(n log(n)), and very good. Quicksort is “in place”, MergeSort is not
12
12 Stable or Unstable ? Faster if almost-sorted ? MergeSort: Stable: doesn’t jump any item over an unsorted region ⇒ two equal items preserve their order Same cost on all input “natural merge” variant doesn’t sort already sorted regions ⇒ will be very fast: O(n) on almost sorted lists QuickSort: Unstable: Partition “jumps” items to the other end ⇒ two equal items likely to reverse their order Cost depends on choice of pivot. simplest choice is very slow: O(n 2 ) even on almost sorted lists better choice (median of three) ⇒ O(n log(n)) on almost sorted lists
13
13 Some Big-O costs revisited Implementing Collections: ArrayList: O(n) to add/remove, except at end Stack:O(1) ArraySet:O(n) (cost of searching) SortedArraySetO( log(n) ) to search (with binary search) O(n) to add/remove (cost of moving up/down) O( n 2 ) to add n items O( n log(n) ) to initialise with n items. (with fast sorting)
14
14 Quick Review of Topics (for Test) Using Collections (List, Set, Map, Bag, Stack, Queue….) Interfaces, AbstractsClasses, Classes (extends and implements) Iterator, Iterable, Comparator, Comparable Implementing Collections (ArrayList, SortedArrayBag, ArraySet…) Recursion Sorting (Selection, Insertion, MergeSort, QuickSort….) Cost analysis (“Big-O” notation and calculation…
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.