Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lesson 8.3 Define and Use Zero and Negative Exponents After today’s lesson, you should be able to use zero and negative to simplify expressions. (CA 2.0)

Similar presentations


Presentation on theme: "Lesson 8.3 Define and Use Zero and Negative Exponents After today’s lesson, you should be able to use zero and negative to simplify expressions. (CA 2.0)"— Presentation transcript:

1 Lesson 8.3 Define and Use Zero and Negative Exponents After today’s lesson, you should be able to use zero and negative to simplify expressions. (CA 2.0)

2

3 PowerValue 1 1 1 1 1 1 1 1

4 Zero Exponent

5

6 Definition: Zero exponent

7 Examples: Simplify.

8

9

10 PowerValue

11 Negative Exponents Using Patterns to Discover the Meaning Behind Negative Exponents

12 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,000 10,000 1000 100 10 1

13 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙10 10,000 1000 100 10 1

14 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,000 1000 100 10 1

15 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙10 1000 100 10 1

16 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 1000 100 10 1

17 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙10 100 10 1

18 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 100 10 1

19 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙10 10 1

20 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 1

21 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 1

22 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 1

23 Complete the following table. Use only a base of 10. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0

24 Now let’s continue the pattern. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 1 100 1 1000 1 10,000

25 Now let’s continue the pattern. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 1 100 1 1000 1 10,000

26 Now let’s continue the pattern. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 10 -1 1 100 1 1000 1 10,000

27 Now let’s continue the pattern. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 10 -1 1 100 1 10∙10 1 1000 1 10,000

28 Now let’s continue the pattern. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 10 -1 1 100 1 10∙10 10 -2 1 1000 1 10,000

29 Now let’s continue the pattern. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 10 -1 1 100 1 10∙10 10 -2 1 1000 1 10∙10∙10 1 10,000

30 Now let’s continue the pattern. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 10 -1 1 100 1 10∙10 10 -2 1 1000 1 10∙10∙10 10 -3 1 10,000

31 Now let’s continue the pattern. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 10 -1 1 100 1 10∙10 10 -2 1 1000 1 10∙10∙10 10 -3 1 10,000 1 10∙10∙10∙10

32 Now let’s continue the pattern. Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 10 -1 1 100 1 10∙10 10 -2 1 1000 1 10∙10∙10 10 -3 1 10,000 1 10∙10∙10∙10 10 -4

33 What should you learn from this? Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 10 -1 1 100 1 10∙10 10 -2 1 1000 1 10∙10∙10 10 -3 1 10,000 1 10∙10∙10∙10 10 -4

34 What should you learn from this? Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 10 -1 1 100 1 10∙10 10 -2 1 1000 1 10∙10∙10 10 -3 1 10,000 1 10∙10∙10∙10 10 -4 1) Any number raised to the zero power is always 1.

35 What should you learn from this? Stand. FormExpanded FormExpon. Form 100,00010∙10∙10∙10∙1010 5 10,00010∙10∙10∙1010 4 100010∙10∙1010 3 10010∙1010 2 10 10 1 110 0 1 10 10 -1 1 100 1 10∙10 10 -2 1 1000 1 10∙10∙10 10 -3 1 10,000 1 10∙10∙10∙10 10 -4 1) Any number raised to the zero power is always 1. 2) A negative exponent will create a fraction.

36 A negative exponent will result in the reciprocal of the base with a positive exponent.

37 5 -2 =

38 A negative exponent will result in the reciprocal of the base with a positive exponent. 5 -2 = 1515 ( ) 2

39 A negative exponent will result in the reciprocal of the base with a positive exponent. 5 -2 = 1515 ( ) 2 = 1515 ∙ 1515 = 1 25

40 A negative exponent will result in the reciprocal of the base with a positive exponent. 4 -3 =

41 A negative exponent will result in the reciprocal of the base with a positive exponent. 4 -3 = 1414 ( ) 3

42 A negative exponent will result in the reciprocal of the base with a positive exponent. 4 -3 = 1414 ( ) 3 = 1414 ∙ 1414 = 1 64 ∙ 1414

43 A negative exponent will result in the reciprocal of the base with a positive exponent. 3 -4 =

44 A negative exponent will result in the reciprocal of the base with a positive exponent. 3 -4 = 1313 ( ) 4

45 A negative exponent will result in the reciprocal of the base with a positive exponent. 3 -4 = 1313 ( ) 4 = 1313 ∙ 1313 = 1 81 ∙ 1313 ∙ 1313

46 A negative exponent will result in the reciprocal of the base with a positive exponent. (-6) -3 =

47 ( ) A negative exponent will result in the reciprocal of the base with a positive exponent. = 1 -6 3 (-6) -3

48 ( ) A negative exponent will result in the reciprocal of the base with a positive exponent. = 1 -6 3 = ∙ = 1 216 ∙ 1 -6 - (-6) -3

49 Practice Time

50 Evaluate. 1)2 -3 =2)4 -4 = 3)(-2) -4 =4)(-5) -3 = 5)8 0 = 6)(-4) 0 =

51 Evaluate. 1)2 -3 =2)4 -4 = 3)(-2) -4 =4)(-5) -3 = 5)8 0 = 6)(-4) 0 = 1818

52 Evaluate. 1)2 -3 =2)4 -4 = 3)(-2) -4 =4)(-5) -3 = 5)8 0 = 6)(-4) 0 = 1818 1 256

53 Evaluate. 1)2 -3 =2)4 -4 = 3)(-2) -4 =4)(-5) -3 = 5)8 0 = 6)(-4) 0 = 1818 1 256 1 16

54 Evaluate. 1)2 -3 =2)4 -4 = 3)(-2) -4 =4)(-5) -3 = 5)8 0 = 6)(-4) 0 = 1818 1 256 1 16 1 125 -

55 Evaluate. 1)2 -3 =2)4 -4 = 3)(-2) -4 =4)(-5) -3 = 5)8 0 = 6)(-4) 0 = 1818 1 256 1 16 1 125 - 1

56 Evaluate. 1)2 -3 =2)4 -4 = 3)(-2) -4 =4)(-5) -3 = 5)8 0 = 6)(-4) 0 = 1818 1 256 1 16 1 125 - 11

57 Evaluate. Remember the order of operations. 1) 4 -2 + 2 -3 = 2) 5 0 – (6) -2 = 3)4(3 + 5) 0 + 4 2 = 4) (3 + 5) -2 =

58 Evaluate. Remember the order of operations. 1) 4 -2 + 2 -3 = 2) 5 0 – (6) -2 = 3)4(3 + 5) 0 + 4 2 = 4) (3 + 5) -2 = 3 16

59 Evaluate. Remember the order of operations. 1) 4 -2 + 2 -3 = 2) 5 0 – (6) -2 = 3)4(3 + 5) 0 + 4 2 = 4) (3 + 5) -2 = 3 16 35 36

60 Evaluate. Remember the order of operations. 1) 4 -2 + 2 -3 = 2) 5 0 – (6) -2 = 3)4(3 + 5) 0 + 4 2 = 20 4) (3 + 5) -2 = 3 16 35 36

61 Evaluate. Remember the order of operations. 1) 4 -2 + 2 -3 = 2) 5 0 – (6) -2 = 3)4(3 + 5) 0 + 4 2 = 20 4) (3 + 5) -2 = 3 16 1 64 35 36

62 Evaluate. Remember the order of operations. 5) 2 -1 + (-2) -2 = 6) 5 2 – 3 0 = 7)2(1 + 3) -2 = 8) (6 + 3) 2 + (6 + 3) -2 =

63 Evaluate. Remember the order of operations. 5) 2 -1 + (-2) -2 = 6) 5 2 – 3 0 = 7)2(1 + 3) -2 = 8) (6 + 3) 2 + (6 + 3) -2 = 3434

64 Evaluate. Remember the order of operations. 5) 2 -1 + (-2) -2 = 6) 5 2 – 3 0 = 7)2(1 + 3) -2 = 8) (6 + 3) 2 + (6 + 3) -2 = 3434 24

65 Evaluate. Remember the order of operations. 5) 2 -1 + (-2) -2 = 6) 5 2 – 3 0 = 7)2(1 + 3) -2 = 8) (6 + 3) 2 + (6 + 3) -2 = 3434 24 1818

66 Evaluate. Remember the order of operations. 5) 2 -1 + (-2) -2 = 6) 5 2 – 3 0 = 7)2(1 + 3) -2 = 8) (6 + 3) 2 + (6 + 3) -2 = 81 3434 24 1818 1 81

67 Definition: Negative exponent

68 Examples: Evaluate the expression.

69

70

71

72

73

74

75

76 Examples: Simplify the expression. Write your answer using only positive exponents.

77

78

79

80

81

82


Download ppt "Lesson 8.3 Define and Use Zero and Negative Exponents After today’s lesson, you should be able to use zero and negative to simplify expressions. (CA 2.0)"

Similar presentations


Ads by Google