Download presentation
Presentation is loading. Please wait.
Published byAron Douglas Modified over 9 years ago
1
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 1 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 1
2
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 2 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 2 Introduction Baryon Spectroscopy What's in Hall B? CLAS Tagged polarized photon beams FROzen Spin Target Glimpse of the data OutlookSummary
3
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 3 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 3
4
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 4 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 4 N*
5
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 5 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 5 Experiment cross section, spin observables Experiment cross section, spin observables TheoryLQCD, quark models, QCD sum rules QCD sum rules, …TheoryLQCD, quark models, QCD sum rules QCD sum rules, … Reaction Theory dynamical frameworks Reaction Theory dynamical frameworks Amplitude analysis → multipole amplitudes → phase shifts Amplitude analysis → multipole amplitudes → phase shifts σ,d σ /d Ω, Σ,P,T (beam-target) E,F,G,H, (beam-recoil) C x,C z,O x,O z, (target-recoil) L x,L z, T x,T z, Coupled channels: resonance parameter resonance parameterextraction
6
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 6 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 6 I. S. Barker, A. Donnachie, J. K. Storrow, Nucl. Phys. B95, 347 (1975). 4 Complex amplitudes - 16 real polarization observables. A complete measurement from 8 carefully chosen observables.
7
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 7 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 7 Emax ~ 6 GeV Imax ~ 200 A Duty Factor ~ 100% E/E ~ 2.5 10-5 Beam P ≥ 80% E ~ 0.5-5.8 GeV tagged Hall-BHall-B
8
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 8 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 8 Torus magnet 6 superconducting coils Gas Cherenkov counters e/ separation, 256 PMTs Time-of-flight counters plastic scintillators, 684 photomultipliers Drift chambers 35,000 cells Liquid D 2 (H 2 ) target + start counter; e mini-torus Electromagnetic calorimeters Lead/scintillator, 1296 photomultipliers
9
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 9 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 9 61 backing counters Jefferson Lab Hall B photon tagger: E = 20-95% of E 0 E up to ~5.8 GeV dE/E ~10 -3 of E 0
10
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 10 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 10 Circularly polarized beam produced by longitudinally polarized electrons CEBAF electron beam polarization >85% tagged flux ~ 50 - 100MHz (for k>0.5 E 0
11
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 11 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 11 Linearly polarized photons: coherent bremsstrahlung on oriented diamond crystal
12
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 12 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 12 existing dynamically polarized NH 3, ND 3 target NH 3, ND 3 target polarizing magnet 5.1 T Helmholtz coils reduces acceptance to θ <65 o
13
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 13 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 13
14
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 14 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 14
15
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 15 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 15
16
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 16 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 16 4 layers of superconductive wire Field 0.54 T No visible losses of polarization while doing spin rotation →↑
17
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 17 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 17 butanol 12 C CH 2
18
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 18 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 18 Base temperature Cooling power Polarization 1/e relaxation time Design goal <50 mK 10 W (Frozen) 20 mW (Polarizing) 80% 500 hours <50 mK 10 W (Frozen) 20 mW (Polarizing) 80% 500 hours 28 mK w/o beam 30 mK with beam 800 W @50 mK 10 mW @ 100 mK 60 mW @300 mK +82%-85% 2800 hours (+Pol) 1600 hours (-Pol) 28 mK w/o beam 30 mK with beam 800 W @50 mK 10 mW @ 100 mK 60 mW @300 mK +82%-85% 2800 hours (+Pol) 1600 hours (-Pol) Result Excellent reliability! Continuously running October 29 – February 12. Entire repolarization procedure takes under 6 hours Take data for 5-6 days
19
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 19 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 19
20
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 20 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 20 g1: E = 0.5 – 2.9 GeV circularly polarized beam γp→π 0 p, π + n d /d γp→ηp d /d γp→η'p d /d γp→KY (K + Λ, K + Σ 0, K 0 Σ + ) d /d , P, C x' /C z' γp→π + π - p
21
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 21 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 21 g8: E = 0.9 – 2.1 GeV Linearly polarized γp→π 0 p, π + n γp→ηp γp→η'p γp→KY (K + Λ, K + Σ 0, K 0 Σ + ) , P, T, O x /O z
22
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 22 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 22 R. Schumacher
23
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 23 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 23 Nikanov et al’.’s refit of Bonn-Gachina multi-coupled- channel isobar model mix includes: S11 wave, P13(1720), P13(1900), P11(1840) K + Σ 0 cross sections also better described with P13(1900) Promote this “missing”resonance from ** to **** status. P13(1900) is found in qqq quark models, but not in quark- diquark models R. Schumacher
24
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 24 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 24 The appears 100% polarized when created with a fully polarized beam. R. Schumacher
25
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 25 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 25 R. Schumacher Energy and angle averages are consistent with unity. No such effect with linearly polarized photons. No such effect for No model predicted this CLAS result.
26
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 26 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 26 Polarized beam still is not enough, we need polarized target! E02-112: γp→KY (K + Λ, K + Σ 0, K 0 Σ + ) E03-105/E04-102: γp→π 0 p, π + n E05-012: γp→ηp E06-013: γp→π + π - p We can do “Complete experiment” for KY!
27
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 27 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 27 November 3, 2007– February 12, 2008 Longitudinally polarized target Circularly and linearly polarized photon beam 0.5-2.4 GeV Trigger: at least one charged particle in CLAS
28
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 28 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 28 Very preliminary! Helicity asymmetry E Raw asymmetry
29
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 29 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 29 Circularly polarized photon beam on longitudinally polarized target E, P, Lx/Lz, Cx/Cz Linearly polarized photon beam on longitudinally polarized target , G, P, (Tx/Tz) Ox/Oz Circularly polarized photon beam on transversely polarized target T, F, P, Tx/Tz, Cx/Cz Linearly polarized photon beam on transversely polarized target , H, T, P, (Lx/Lz) Complete Scheduled for 2010
30
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 30 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 30 To reveal isospin structure it is essential to do measurements on the neutron G13 running period accumulated large dataset with circularly an linearly polarized photons on liquid deuterium unpolarized target The data are being analized
31
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 31 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 31 A. Sandorfi
32
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 32 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 32 A. Sandorfi
33
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 33 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 33 New addition in Hall B of Frozen Spin Target, with both, longitudinal and transverse polarization significantly advances our experimental capabilities. It is possible to perform complete experiment of KY photoproduction and nearly complete for other final states. Entire program is more than just a sum of several experiments, observables for all final states are measured simultaneously under the same experimental conditions and have the same systematic uncertainties. It can be considered as “coupled channel experiment” ultimately providing data for coupled channel analysis and extraction of parameters of baryon resonances. Supply data EBAC – Excited Baryon Analysis Center at JLAB Experiments with HD-Ice target are in preparation
34
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 34 Eugene Pasyuk DSPIN-09 Dubna, September 1-5, 2009 34 The CLAS Collaboration Idaho State University, Pocatello, Idaho INFN, Laboratori Nazionali di Frascati, Frascati, Italy INFN, Sezione di Genova, Genova, Italy Institut de Physique Nucléaire, Orsay, France ITEP, Moscow, Russia James Madison University, Harrisonburg, VA Kyungpook University, Daegu, South Korea University of Massachusetts, Amherst, MA Moscow State University, Moscow, Russia University of New Hampshire, Durham, NH Norfolk State University, Norfolk, VA Ohio University, Athens, OH Old Dominion University, Norfolk, VA Arizona State University, Tempe, AZ University of California, Los Angeles, CA California State University, Dominguez Hills, CA Carnegie Mellon University, Pittsburgh, PA Catholic University of America CEA-Saclay, Gif-sur-Yvette, France Christopher Newport University, Newport News, VA University of Connecticut, Storrs, CT Edinburgh University, Edinburgh, UK Florida International University, Miami, FL Florida State University, Tallahassee, FL George Washington University, Washington, DC University of Glasgow, Glasgow, UK Rensselaer Polytechnic Institute, Troy, NY Rice University, Houston, TX University of Richmond, Richmond, VA University of South Carolina, Columbia, SC Thomas Jefferson National Accelerator Facility, Newport News, VA Union College, Schenectady, NY Virginia Polytechnic Institute, Blacksburg, VA University of Virginia, Charlottesville, VA College of William and Mary, Williamsburg, VA Yerevan Institute of Physics, Yerevan, Armenia Brazil, Germany, Morocco and Ukraine, as well as other institutions in France and in the USA, have individuals or groups involved with CLAS, but with no formal collaboration at this stage.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.