Download presentation
Presentation is loading. Please wait.
Published byUrsula Fields Modified over 9 years ago
1
1 Edge-bipancyclicity of star graphs under edge-fault tolerant Applied Mathematics and Computation, Volume 183, Issue 2, 15 December 2006, Pages 972-979 Min Xu, Xiao-Dong Hu and Qiang Zhu 學 生 : 蕭 旻 昆 指導教授 : 洪 春 男
2
2 Abstract Introduction Star graphs Edge-pancyclicity of star graphs with edge-fault Outline
3
3 Abstract It has been shown by Li [T.-K. Li, Cycle embedding in star graphs with edge faults, Appl. Math. Comput. 167 (2005) 891–900] that S n contains a cycle of length from 6 to n! when the number of fault edges in the graph does not exceed n - 3. We improve this result by showing that for any edge subset F of S n with |F|≤n - 3 every edge of S n - F lies on a cycle of every even length from 6 to n! provided n≥3.
4
4 Introduction [7] showed that any cycle of even length from 6 to n! can be embedded into S n. Hsieh et al. [5] and Li et al. [9], proved that the n-dimensional star graph S n is (n-3)-edge-fault tolerant Hamiltonian laceable for n ≥ 4. Recently, Li [8] considered the edge-fault tolerance of star graphs and showed that cycles of even length from 6 to n! can be embedded into the n- dimensional star graphs when the number of the fault edges are less than n - 3.
5
5 Introduction In Section 2, we give the definition and basic properties of the n-dimensional star graph S n. In Section 3, we discuss the edge-fault-tolerant edge-bipancyclicity of the star graphs.
6
6 Star graphs Lemma 1 (Li [8]). There are n vertex-disjoint S n - 1’s in S n for n ≥ 2.
7
7 Star graphs let H i:j = (V i:j,E i:j ), where V i:j = {u ∈ V(S n ) | u=u 1 u 2 …u i …u n,u i = j} and E i:j = {(u, v) ∈ E(S n )u,v ∈ V i:j } for 1 ≤j ≤ n. Then {V i:1,V i:2,...,V i : n } is a partition of V(S n ) and H i : j is isomorphic toS n - 1. we will use S i:j n-1 to denote the subgraph H i : j in the above partition. Specifically, we use S j n-1 as the abbreviation of S n:j n-1 and call it the jth (n-1)-dimensional subgraph of S n.
8
8 H i:j (2314 , 1324 , 2341 , 4321 , 4312 , 1342) 2314 1324 2341 4321 4312 1342 1234 32142134 3124 4231 2431 3241 3421 2413 1423 2143 4123 4213 1243 3412 1432 4132 3142
9
9 For a vertex x,we use x i to denote the ith digits of vertex x. For a set of distinct edges e 1 =(x 1,y 1 ),e 2 =(x 2,y 2 ),..., e m =(x m,y m ) in S i n - 1 for n≥3 with x 1 1 = x 2 1 =... = x m 1 = j and y 1 1 =y 2 1 =y m 1 =k, we call the edge set {e 1, e 2,..., e m } a set of (i,j,k)-edges. Obviously, a set of (i,j,k)- edges is also a set of (i,k,j)-edges since the edges we discuss in this paper have no direction. Star graphs
10
10 n=8 , i=5 , j=3 , k=6 x 1 = 34216785 y 1 = 64213785 x 2 = 32761875 y 2 = 62731875 Star graphs
11
11 Theorem 2 The n-dimensional star graph S n is (n-3)-edge- fault Hamiltonian laceable for n≥4. Star graphs
12
12 Lemma 3 For any edge e and e’ of S 4, there exists a cycle of even length from 6 to 24 in S 4 e’containing e. Proof Since S n is edge-symmetric, without loss of generality, we assume that e=(1234,3214).By Theorem 2,there exists a Hamiltonian path P connecting the vertices 1234 and 3214 in S n -e’. Then P + e is a cycle of length 24 containing e in S 4 -e’. Let l be any even integer with 6≤l≤22.we need to construct a set of cycles of length l such that the intersection of their edge sets is e.
13
13 L = 6 L = 8 L = 10 L = 12 L = 14 L = 16 L = 18 L = 20 L = 22 2314 1324 2341 4321 4312 1342 1234 3214 2134 3124 4231 2431 3241 3421 2413 1423 2143 4123 4213 1243 3412 1432 4132 3142 e
14
14 Lemma 4 For any edge e and an edge set F with |F| = n-3 and n ≥ 5, there exists a subgraph S i:j n- 1 =(V i:j,E i:j ) such that e ∈ E i : j and |E i : k ∩F | ≤ n - 4 for all 1 ≤ k ≤ n.
15
15 Algorithm 5 Input m, n, where n ≥ 4 and 3 ≤ m ≤ n. Output (n-2) disjoint paths. 1. Select arbitrary (n-2)vertices, say a 1,a 2,..,a n-2 from V (S m n-1 ) with the first digits equal to 1 2. For i =1 to (n-2) 3. P i (a i )For j=2 to m 4. v =last Vertex(P i ) //Suppose that v = v 1 v 2 v n-1 v n. 5. //last Vertex(P i ) returns the last vertex in P i. 6. Append v n v 2..v n-1 v 1 to P i 7. Append v l v 2.. v l-1 v n v l+1.. v n-1 v 1 to P i where v l = j 8. Append v n v 2.. v n-1 v 1 to P i, where v is the last vertex in P i 9. Output P 1,P 2,...,P n-2
16
16 例 1: n=4 , m=3 1243 , 3241 , 2341 , 1342 , 3142 , 2143 1423 , 3421 , 4321 , 1324 , 3124 , 4123 例 2: n=4 , m=4 1234 , 4231 , 2431 , 1432 , 3412 , 2413 , 4213 , 3214 1324 , 4321 , 2341 , 1342 , 3142 , 2143 , 4123 , 3124
17
17 1324 1342 3142 4321 4123 3241 2143 1243 2314 2341 4312 1234 3214 2134 3124 4231 2431 3421 2413 14234213 3412 1432 4132
18
18 Lemma 6 There are (n-2) disjoint paths of length (2m-1) crossing S 1 n-1,S 2 n-1,..., S m n-1 such that the endpoints of these paths are in S m n-1 for n≥3 and 3 ≤ m ≤ n. The endpoints of these paths are adjacent for m = 3,4.
19
19 Edge-pancyclicity of star graphs with edge-fault Theorem 9 For any edge subset F of S n with |F| ≤ n-3 and any edge e ∈ S n -F, there exists a cycle of even length from 6 to n! in S n -F containing e provided n ≥ 3.
20
20 Case 1 6 ≤ l ≤ (n-1)! By the induction hypothesis, there exists a cycle C of length l in S an n-1 containing e.Specially, we use C1 and C2 to denote the cycles of length (n-1)!-2 and (n-1)!, respectively. Case 2 (n-1)! + 2 ≤ l ≤ 3(n-1)! In this case, we can write l = l 1 + l 2 + l 3 where l 1, l 2 and l 3 satisfy the following conditions: l 1 =(n-1)!-2 or (n-1)! l 2 =2 or 6 ≤ l 2 ≤ (n-1)! l 3 =2 or 6 ≤ l 3 ≤ (n-1)!
21
21 Case 3 3(n-1)! + 2 ≤ l ≤ n! In this case, we can write l = l 1 + l 2 + l 3 + … + l n where l 1 ≥ l 2 ≥ l 3 ≥…≥ l n and the following restrictions should be satisfied: l 1 = (n-1)!-2 or (n-1)! l 2 = (n-1)!-2 or (n-1)! l 3 = 2 or 6 ≤ l 3 ≤ (n-1)! l 4 = 0 or 2 or 6 ≤ l 3 ≤ (n-1)! … l n = 0 or 2 or 6 ≤ l n ≤ (n-1)!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.