Download presentation
Presentation is loading. Please wait.
Published byIsabella Gregory Modified over 9 years ago
2
Combinatorial Optimization 2012 1 3.5 Minimum Cuts in Undirected Graphs 3.5.1 Global Minimum Cuts
3
Combinatorial Optimization 2012 2
4
3 Identifying nodes f, g 2 1 2 5 2 6 3 3 2 a 5 3 h f g e d b c 2 1 2 5 2 3 3 2 a 5 3 h x e d b c 4 4
5
Combinatorial Optimization 2012 4
6
5 Node Identification Algorithm
7
Combinatorial Optimization 2012 6 2 1 2 5 2 6 3 3 2 a 5 3 h f g e d c Legal ordering beginning with a is : a, b, c, d, e, h, g, f b 4
8
Combinatorial Optimization 2012 7
9
8
10
9
11
10 randomized algorithm for minimum cut problem Random Contraction Algorithm
12
Combinatorial Optimization 2012 11
13
Combinatorial Optimization 2012 12
14
Combinatorial Optimization 2012 13 3.5.2 Cut-Trees p q
15
Combinatorial Optimization 2012 14 E3 E2E1 D2 D1 C1 A B2B1 B3 General Procedure E3 E2E1 Y B2B1 B3 D2 D1 C1 Z f(y,z)
16
Combinatorial Optimization 2012 15
17
Combinatorial Optimization 2012 16 S (1) r w v s X (2) r
18
Combinatorial Optimization 2012 17
19
Combinatorial Optimization 2012 18 A B X Y h h x y a a B b Proof of Lemma 3.42
20
Combinatorial Optimization 2012 19
21
Combinatorial Optimization 2012 20 A variant of Gomory-Hu procedure can be used to identify the violated odd set constraint for the matching problem (Ref: M. W. Padberg and M. R. Rao (1982), Odd Minimum Cut-Sets and b- Matchings, Mathematics of Operations Research 7, 67-80.) More efficient implementation: D. Gusfield, "Very simple methods for all pairs network flow analysis," SIAM Journal on Computing 19 (1990) 143- 155
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.