Presentation is loading. Please wait.

Presentation is loading. Please wait.

Combinatorial Optimization 2012 1 3.5 Minimum Cuts in Undirected Graphs 3.5.1 Global Minimum Cuts.

Similar presentations


Presentation on theme: "Combinatorial Optimization 2012 1 3.5 Minimum Cuts in Undirected Graphs 3.5.1 Global Minimum Cuts."— Presentation transcript:

1

2 Combinatorial Optimization 2012 1 3.5 Minimum Cuts in Undirected Graphs 3.5.1 Global Minimum Cuts

3 Combinatorial Optimization 2012 2

4 3 Identifying nodes f, g 2 1 2 5 2 6 3 3 2 a 5 3 h f g e d b c 2 1 2 5 2 3 3 2 a 5 3 h x e d b c 4 4

5 Combinatorial Optimization 2012 4

6 5 Node Identification Algorithm

7 Combinatorial Optimization 2012 6 2 1 2 5 2 6 3 3 2 a 5 3 h f g e d c  Legal ordering beginning with a is : a, b, c, d, e, h, g, f b 4

8 Combinatorial Optimization 2012 7

9 8

10 9

11 10  randomized algorithm for minimum cut problem Random Contraction Algorithm

12 Combinatorial Optimization 2012 11

13 Combinatorial Optimization 2012 12

14 Combinatorial Optimization 2012 13 3.5.2 Cut-Trees p q

15 Combinatorial Optimization 2012 14 E3 E2E1 D2 D1 C1 A B2B1 B3 General Procedure E3 E2E1 Y B2B1 B3 D2 D1 C1 Z f(y,z)

16 Combinatorial Optimization 2012 15

17 Combinatorial Optimization 2012 16 S (1) r w v s X (2) r

18 Combinatorial Optimization 2012 17

19 Combinatorial Optimization 2012 18 A B X Y h h x y a a B b Proof of Lemma 3.42

20 Combinatorial Optimization 2012 19

21 Combinatorial Optimization 2012 20  A variant of Gomory-Hu procedure can be used to identify the violated odd set constraint for the matching problem (Ref: M. W. Padberg and M. R. Rao (1982), Odd Minimum Cut-Sets and b- Matchings, Mathematics of Operations Research 7, 67-80.)  More efficient implementation: D. Gusfield, "Very simple methods for all pairs network flow analysis," SIAM Journal on Computing 19 (1990) 143- 155


Download ppt "Combinatorial Optimization 2012 1 3.5 Minimum Cuts in Undirected Graphs 3.5.1 Global Minimum Cuts."

Similar presentations


Ads by Google