Download presentation
Presentation is loading. Please wait.
Published byElisabeth Anthony Modified over 9 years ago
1
Introduction to SOT data analysis K.Ichimoto with help of T.Berger, Y.Katsukawa, T.Yokoyama, T.Shimizu, M.Shimojo Hinode workshop, 2007.12.8-10, Beijing
2
How to find data? - DARTSJAXA data archive/ search system ( Kano) http://darts.isas.jaxa.jp/hinode/top.do - Quick Look movies (NAOJ) http://solar-b.nao.ac.jp/QLmovies/index_e.shtml - Operation info. (LMSAL) (timeline for pointing, target, obs. purpose etc.) https://sot.lmsal.com/operations/timeline/
3
NAOJ Quick Look movies http://solar-b.nao.ac.jp/QLmovies/index_e.shtml
5
LMSAL operation info. https://sot.lmsal.com/operations/timeline/
7
How to get images on your WS? IDL> hinode_server_select, /darts; set a remote server IDL> time0 = '09-Dec-2006T11:30:00' IDL> time1 = '09-Dec-2006T15:00:00' IDL> sot_cat, time0, time1, /level0, cat, files, /URLS IDL> help, files FILES STRING = Array[2994] IDL> ss = sot_umodes(cat,/int); interactive selection of data IDL> sock_copy, files[ss], out_dir='./demo‘ ; copy to local disk IDL> lfiles = file_list(‘./demo’, ’*.fits*') IDL> read_sot, lfiles[0], index, dat; read SOT fits file IDL> help, index, dat INDEX STRUCT = -> MS_250671422001 Array[1] DAT INT = Array[2048, 1024] IDL> tvscl,dat : On SSW IDL… Sample programs for tutorial are found in $SSW/hinode/sot/doc/paris/*.pro Courtesy by Dr. Tom Berger
8
SOT analysis software 3 Dec 2007 Y. Katsukawa (NAOJ) T.Berger (LMSAL)
9
FG Photometric corrections: Level-0 ⇒ Level-1 Camera readout errors: fg_shift_pix.pro –Central 2 vertical lines of camera dropped in partial-camera readout. –Top line wrapped around to bottom. –1x1 and 2x2 are supported. 4x4 still in development. Dark current and pedestal subtraction: fg_dark_sub.pro –FG camera 4096 x 2048 split-frame read-out: 2048x2048 frames. Each has different pedestal. –Pedestal is temperature dependent. Linear combination of camera and electronics box temperatures. –1x1 and 2x2 are supported. 4x4 still in development. Flat field correction: fg_flatfield.pro – Flat fields are created by Kuhn-Lin algorithm. – Currently there are flat images only for CN 388.3 (also used for Ca II H-line images) G-band 430.5 Blue continuum 450.5 Green continuum 555.0 Red continuum 668.4 Fe I 630.2 (affected by a big bubble) Na ID 589.6 (affected by a big bubble) Mg Ib 517.3 (affected by a big bubble) H-alpha 656.3 (affected by a big bubble) Bad camera pixel correction via map: fg_bad_pix.pro Cosmic ray removal: sot_nospike.pro Correction for BFI/NFI plate-scale difference and image shifts: fg_reg_wave.pro
10
Dark and flat field Avg. Pedestal = 192Avg. Pedestal = 187 Dark frame example Flat field example (G-band)
11
FG Photometric corrections Accomplished via fg_prep.pro (Tom Berger: berger@lmsal.com, Yukio Katsukawa: yukio.katsukawa@nao.ac.jp)berger@lmsal.comyukio.katsukawa@nao.ac.jp BFI simple filtergrams corrected completely NFI data product corrected: –FG (simple filtergram) –FGIV (shuttered IV) –FGIQUV (shuttered IQUV) –Shutterless modes still in development. Polarization calibration still in development Call formats IDL> fg_prep, index, data, index_out, data_out, /despike IDL> fg_prep, filename_list, -1, index_out, data_out, /despike IDL> fg_prep, index, data, index_out, data_out, /despike, $ x0=256, y0=256, subimgx=768, submigy=512
12
SP Photometric corrections: Level-0 ⇒ Level-1 Camera readout errors Dark current and pedestal subtraction –No shutter for SP: darks only taken before SOT door-open. –Eclipses may offer more. Flat field correction Polarimetric calibration FPP temperature warping –Slit positions wanders vertically during scans. –Spectral lines also wander in the diespersion direction Combine two spectra Accomplished by sp_prep.pro (Bruce Lites: lites@hao.ucar.edu, Kiyoshi Ichimoto: ichimoto@solar.mtk.nao.ac.jp, Sam Freeland)ichimoto@solar.mtk.nao.ac.jp Call formats IDL> sp_prep, filename_list, outdir=directory_name
13
BFI red continuum,level-0
14
BFI red continuum,level-1
15
SP4D20070228_183214.2.fitslevel-0 I -Q -U -VI Q U V
16
SP4D20070228_183214.2.fitslevel-1 I Q U V
17
FPP +Q +U UU View from the top of SOT QQ VV +V View towards the sun S/C +Y S/C +X W N S E +Q QQ UU +U VV +V Definition of SOT polarization coordinate This definition is the same as that used in the analysis of the suntest data of 2004.8 and consistent with the ASP definition, ie. positive V at blue side of spectral line gives positive magnetic flux. This is also consistent with the definition of Stokes V: (right circ. – left circ.), where right circular polarization is positive when electric vector rotates clockwise looking at the source. This definition is applied to the Stokes vectors obtained after application of the X-matrix. Raw Stokes products of FPP are not consistent with this definition.
18
IDL program to obtain X X = nfi_pcalx(wav, obs_id=obs_id, expo=expo, $ id_table=id_table, calver=calver, progver=progver) INPUT: wav - wavelength [nm], 517.2, 525.0, 589.6, 630.2, 656.3 obs_id - Obs_ID expo - exposure time [ms], input for shutter mode, output for shutterless mode. id_table - Obs_id list file, default: 'C:\Hinode\ops\dbase\fpptbl\OBS_ID_060208.txt' OUTPUT: calver - version of calibration data ex. ‘delay_2006.1.30/Tmat_2006.1.30’ progver - program version RETURN: X = X[4,4]for shuttered IQUV mode = X[4,4,2]for shutterless IQUV mode giving X for left and right CCD = X[4,2]for shuttered IV mode = X[4,2,2]for shutterless IV mode = X[4]for shuttered FG
19
Usage of X to calibrate the SOT products: Stokes IQUVX[4,4] or X[4,4,2] shuttered S = X -1 S obs shutterless S left = X[*,*,0] -1 S obs,left S righ = X[*,*,1] -1 S obs,right IV (mag.) X[4,2] or X[4,2,2] shutteredI = I obs, X[1,0] gives degree of Q I crosstalk V = V obs / X[3,1], shutterless I = I obs, X[1,0,*] gives degree of Q I crosstalk V left = V obs,left / X[3,1,0] V right = V obs,right / X[3,1,1] I simpleX[4](only shutter mode) I = I obs, X[1-3] gives degree of Q,U,V I crosstalk IUVX[4,3,2] (only shutterless mode) I = I obs, X[1,0,*] gives degree of Q I crosstalk U left = U obs,left / X[3,1,0], U right = U obs,right / X[3,1,1] V left = V obs,left / X[3,2,0], V right = V obs,right / X[3,2,1] and so on..
20
Diagnostics using SP data Zeeman effect produces polarization in spectral lines Obtain magnetic field vectors and motions in solar atmosphere. slit
21
Milne-Eddington fitting program of the Hinode SOT/SP data T. Yokoyama (U. Tokyo) Y. Katsukawa, M. Shimojo S. Tsuneta, Y. Suematsu, K. Ichimoto (NAOJ) T. Shimizu (JAXA), S. Nagata (Kyoto U.) M. Kubo, B. Lites, H. Socas-Navarro (HAO) Hinode SOT Japan/US team Kosugi Memorial workshop 2007.4.25. NAOJ, Mitaka
22
Introduction – Stokes ME fitting Fitting (inversion) –In the fitting procedure, we iteratively solve a “forward problem” which is described by the radiative transfer equations including the Zeeman effect. –It is necessary to do a huge amount of computations. So we need an approximation for the efficient (semi- automatic pipeline) process of the data. The Milne-Eddington (ME) atmosphere model –The Unno-Rachkovsky solution The solution is simply described by a set of algebraic eqs. Previous codes –ASP code ( Skumanich & Lites 1987) –MELANIE ( Socas-Navarro) –…
23
Atmospheric parameters Bmagnetic field strength 、 “ incliation Φ “ azimuth Λ 0 line shift Δλ D Doppler width adamping Η 0 line/continuum abs. ratio B 0 source function B 1 source function gradient Milne-Eddignton atmosphere ○ Radiative transfer eq. and assumption e.g., J.C. del Toro Iniesta, ‘Spectropolarimetry’ 2002
24
SOT/SP fitting code demands –high-performance –Tune-up + Parallelization Contents of the code –Written in Fortran 90 with IDL front-ends –Derivation of a first guess PIKAIA code (HAO, Charbonneau) Genetic algorithm –Fitting Based on MELANIE (HAO, Socas-Navarro) Lebenburg-Mardquard method –Infer the 180-degree azimuth ambiguity MAGPACK2 (Sakurai) By comparison with the potential field performance –~50 msec/pixel –14 hours for a 1k^2 image. But < 1 hour by a 16-cpu parallel run.
25
Fitting results: NOAA 10923 B strengthinclinationazimuth Doppler vel.Doppler width Line strength dampingSource funct.Source grad.Macro turb.Straylit fract.Straylight shift Complement number of the filling factor
26
Comparison with the ASP code’s results inclination azimuth Field strength Straylight fraction Left: SOT/SP Right: ASP code
27
Comparison with the results obtained by the ASP code Almost consistent. There is a crosstalk between the field strength and the staylight fraction when B is weak. But the average magnetic flux density is consistent. Field strengthinclination Inclination Straylight fraction Flux density
28
Level-2 data will be available on the web (DARTS) in near future. Program for simple IQUVD maps files[*] contains SP4D file names ;----------------------------------------------------------------------- iint=[95,105]; interval for contin image l01=30; line (6301.5) position vint1=[5,50]; interval for Dopp. (CG) <-- 6301.5 l0=75 &w1=2 &w2=10; line (6302.5) position and integ interval, sp_prep.pro vint=[57,100]; interval for Dopp. (CG) <-- 6302.5 ;----------------------------------------------------------------------- nf=n_elements(files) xp=findgen(vint[1]-vint[0]+1)-(vint[1]-vint[0])/2. smap=fltarr(nf,ny,5) for i=0,nf-1 do begin print,i,' ',files[i] s1=gt_sotfits(files[i],fh=fh1,sth=h1) smap[i,*,0]=rebin(s1[iint[0]:iint[1],*,0],1,ny); I smap[i,*,1]=rebin(s1[l0-w2:l0-w1,*,1],1,ny)+rebin(s1[l0+w1:l0+w2,*,1],1,ny); Q smap[i,*,2]=rebin(s1[l0-w2:l0-w1,*,2],1,ny)+rebin(s1[l0+w1:l0+w2,*,2],1,ny); U smap[i,*,3]=rebin(s1[l0-w2:l0-w1,*,3],1,ny)-rebin(s1[l0+w1:l0+w2,*,3],1,ny); V iprof=s1(vint(0):vint(1),j,0) iprofr=max(iprof)-iprof smap[i,j,4]=total(xp*iprofr)/total(iprofr); CG Dop. endfor
29
Hinode Calibration for Precise Image Co-alignment between SOT and XRT (November 2006 - April 2007) T.Shimizu (ISAS/JAXA) et al, 2007, PASJ, 59, 845-852 Image co-alignment
30
SOT internal image alignment & scale BFI from read data NFI from ground test (Okamoto etal 2007) Note (1): The offset at the center pixel (2047.5, 1023.5) of the full frame (4K×2K) images to the center pixel of G-band (4305) data. The offset is given in the pixel unit of original image at each wavelength before scaling its magnification. Note (2): Scale deviation from the G-band data. The value larger than 1 means that the pixel scale of original image at each wavelength is larger than that of G-band image.
31
Roll angle offset of SOT/BFI and XRT CCD frames from the solar north direction. SOT-XRT offset from the Mercury transit on 2006-11-08
33
Time variation of pointing wrt. the sun (or sun-sensor) Orbital variationLong-term variation
34
Need to be done many Hinode Solar Optical Telescope Data Analysis Guide will appear soon
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.