Download presentation
Presentation is loading. Please wait.
Published byDiana Hill Modified over 9 years ago
1
6.3 – Evaluating Polynomials
2
degree (of a monomial) 5x 2 y 3 degree =
3
degree (of a monomial) 5x 2 y 3 degree =
4
degree (of a monomial) 5x 2 y 3 degree = 5
5
degree (of a monomial) 5x 2 y 3 degree = 5 degree
6
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable)
7
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable) - highest exponent of a single term
8
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable) - highest exponent of a single term Ex. 1 State the degree and leading coefficient of the polynomial. 7x 4 + 5x 2 + x – 9
9
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable) - highest exponent of a single term Ex. 1 State the degree and leading coefficient of the polynomial. 7x 4 + 5x 2 + x – 9 degree =
10
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable) - highest exponent of a single term Ex. 1 State the degree and leading coefficient of the polynomial. 7x 4 + 5x 2 + x – 9 degree =
11
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable) - highest exponent of a single term Ex. 1 State the degree and leading coefficient of the polynomial. 7x 4 + 5x 2 + x – 9 degree =
12
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable) - highest exponent of a single term Ex. 1 State the degree and leading coefficient of the polynomial. 7x 4 + 5x 2 + x 1 – 9 degree =
13
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable) - highest exponent of a single term Ex. 1 State the degree and leading coefficient of the polynomial. 7x 4 + 5x 2 + x 1 – 9x 0 degree =
14
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable) - highest exponent of a single term Ex. 1 State the degree and leading coefficient of the polynomial. 7x 4 + 5x 2 + x – 9 degree = 4
15
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable) - highest exponent of a single term Ex. 1 State the degree and leading coefficient of the polynomial. 7x 4 + 5x 2 + x – 9 degree = 4 lead coeff. =
16
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable) - highest exponent of a single term Ex. 1 State the degree and leading coefficient of the polynomial. 7x 4 + 5x 2 + x – 9 degree = 4 lead coeff. =
17
degree (of a monomial) 5x 2 y 3 degree = 5 degree (of a polynomial w/1 variable) - highest exponent of a single term Ex. 1 State the degree and leading coefficient of the polynomial. 7x 4 + 5x 2 + x – 9 degree = 4 lead coeff. = 7
18
Funtional Values
19
Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x
20
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5)
21
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5)
22
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) =
23
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) =
24
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) = (-5) 3
25
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) = (-5) 3 + 4(-5) 2
26
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) = (-5) 3 + 4(-5) 2 – 5(-5)
27
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) = (-5) 3 + 4(-5) 2 – 5(-5)
28
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) = (-5) 3 + 4(-5) 2 – 5(-5) = -125
29
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) = (-5) 3 + 4(-5) 2 – 5(-5) = -125 + 4(25)
30
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) = (-5) 3 + 4(-5) 2 – 5(-5) = -125 + 4(25) – 5(-5)
31
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) = (-5) 3 + 4(-5) 2 – 5(-5) = -125 + 4(25) – 5(-5) = -125 + 100
32
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) = (-5) 3 + 4(-5) 2 – 5(-5) = -125 + 4(25) – 5(-5) = -125 + 100 + 25
33
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) = (-5) 3 + 4(-5) 2 – 5(-5) = -125 + 4(25) – 5(-5) = -125 + 100 + 25 = -25 + 25
34
Funtional Values Ex. 2 Find the following functional values if p(x) = x 3 + 4x 2 – 5x a. p(-5) p(-5) = (-5) 3 + 4(-5) 2 – 5(-5) = -125 + 4(25) – 5(-5) = -125 + 100 + 25 = -25 + 25 = 0
35
b. p(3a)
36
p(x) = x 3 + 4x 2 – 5x
37
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) =
38
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) =
39
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) =
40
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3
41
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3
42
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2
43
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2
44
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a)
45
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a)
46
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a)
47
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3
48
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4
49
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2
50
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a)
51
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a)
52
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27
53
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27
54
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3
55
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4
56
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)
57
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)
58
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2
59
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2
60
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 5(3a)
61
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a
62
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a)
63
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a)
64
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x
65
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)]
66
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] =
67
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3
68
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[
69
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[
70
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[
71
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[
72
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[a 3 + 4a 2 – 5a]
73
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[a 3 + 4a 2 – 5a]
74
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[a 3 + 4a 2 – 5a]
75
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[a 3 + 4a 2 – 5a] = 3(a 3 )
76
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[a 3 + 4a 2 – 5a] = 3(a 3 )
77
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[a 3 + 4a 2 – 5a] = 3(a 3 ) + 3(4a 2 )
78
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[a 3 + 4a 2 – 5a] = 3(a 3 ) + 3(4a 2 )
79
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[a 3 + 4a 2 – 5a] = 3(a 3 ) + 3(4a 2 ) – 3(5a)
80
b. p(3a) p(x) = x 3 + 4x 2 – 5x p(3a) = (3a) 3 + 4(3a) 2 – 5(3a) = (3) 3 (a) 3 + 4(3) 2 (a) 2 – 5(3a) = 27a 3 + 4(9)a 2 – 15a = 27a 3 + 36a 2 – 15a c. 3p(a) p(x) = x 3 + 4x 2 – 5x 3[p(a)] 3[p(a)] = 3[a 3 + 4a 2 – 5a] = 3(a 3 ) + 3(4a 2 ) – 3(5a) = 3a 3 + 12a 2 – 15a
81
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x
82
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x
83
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞
84
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞
85
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x)
86
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x)
87
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x)
88
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞
89
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞ As x –∞
90
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞ As x –∞
91
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞ As x –∞, f(x)
92
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞ As x –∞, f(x)
93
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞ As x –∞, f(x)
94
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞ As x –∞, f(x) –∞
95
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞ As x –∞, f(x) –∞
96
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞ As x –∞, f(x) –∞
97
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞ As x –∞, f(x) –∞ 2. Even degree
98
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞ As x –∞, f(x) –∞ 2. Even degree
99
Ex. 3 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) –∞ As x –∞, f(x) –∞ 2. Even degree 3. 2 real zeros
100
Ex. 4 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) As x –∞, f(x) 2. degree 3. real zero(s)
101
Ex. 4 For each graph: 1.Describe the end behavior 2.Determine if the degree is even or odd. 3.State the number of real zeros. y (solutions) a. x 1. As x +∞, f(x) +∞ As x –∞, f(x) –∞ 2. Odd degree 3. 1 real zero
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.