Download presentation
Presentation is loading. Please wait.
Published byCody Palmer Modified over 9 years ago
1
CS603 Distributed Object Systems March 27, 2002
2
Distributed Object Systems What are they? –CORBA –DCOM –Java/RMI But what does it mean? –RPC for the object crowd –With all the tradeoffs/choices/distinctions of RPC systems
3
Distributed Objects as RPC++ Interface Description Language –Defines external view of objects Compilers / Precompilers –Language extensions Run Time System –Directory Services –Data Conversion –Security / Authentication
4
Distributed Object System: Distinctions Single language vs. multilingual –Cross-lingual? Platform independence –True cross-platform communication? “Extras” –Real-time features –Fault tolerance –Transaction support –…
5
The Big Three CORBA – DCE on steroids –Cross-lingual (primarily C++, Java) –Cross-platform –Many features DCOM – Microsoft’s answer –Some cross-lingual support (within Microsoft world) –Windows only –Built on DCE RPC and COM Java RMI –Single language, tightly integrated
6
CORBA: Background Object Management Group –Corporate-sponsored standards body –Members develop and vote on standards –Current specs include UML, CORBA Started April 1989 Working groups for extensible specifications –RealTime CORBA –Fault-Tolerant CORBA –Embedded CORBA –Many more…
7
CORBA: Basics (Thanks to Doug Schmidt, Andrew Tannenbaum, and OMG for figures) Object Request Broker Object Services –Naming, “Trading” (property-based location), security, etc. Common Facilities –General interfaces, e.g., OpenDoc –Domain interfaces: Standards –Application interfaces: IDL specifications for a particular application
8
ORB Architecture
9
CORBA IDL Syntactic description of objects Single Interface Definition Language –Compiles to multiple binary interfaces: C, C++, Java, Smalltalk, Ada, COBOL, ? Assign Repository Identifier –Register interface in interface repository Generate Proxy –Client-side stub –Marshals invocation request –Unmarshals result Also Dynamic Invocation Interface –Invoke object when interface not known until runtime
10
Key ORB facilities Manipulate object references –Marshal/Unmarshal –Comparison Service Discovery –By name –By property –Interface repository and Implementation repository ORB/Proxy interface can be vendor specific
11
Interfaces
12
Invocation Models Default: Synchronous Semantics –Block for response –Exception on failure –At-most-once semantics One-Way Request –No response needed/possible –Non-blocking –Best effort semantics Deferred Synchronous –Caller can continue and later wait for result
13
Naming Object reference –Language independent “pointer” –POA: Adaptor to make server-side code accessible to client
14
Indirect Binding
15
Message passing models Events –No guarantees –No persistence Notification –Events with filtering
16
Persistent Communications Callback model –Client provides object that is called with result Polling Model –Client polls for results Messages Stored by ORB
17
Processes Client and Server distinct –Client processes are simple –Server potentially complex Agent processes –Interface to external agent system
18
Common Services Collection service –List/queue/etc. objects Iterator, get methods –“Class library” for CORBA Query service –Construct collections searchable through declarative query language Concurrency control service –Locking mechanisms Transaction service
19
Services – The Full ListThe Full List CollectionGrouping objects into lists, queue, sets, etc. QueryQuerying collections of objects in a declarative manner ConcurrencyAllow concurrent access to shared objects TransactionFlat and nested transactions on method calls over multiple objects EventAsynchronous communication through events NotificationEvent-based asynchronous communication ExternalizationMarshaling and unmarshaling of objects Life cycleCreation, deletion, copying, and moving of objects LicensingAttaching a license to an object NamingSystemwide naming of objects PropertyAssociating (attribute, value) pairs with objects TradingPublish and find the services an object has to offer PersistencePersistently storing objects RelationshipExpressing relationships between objects SecuritySecure channels, authorization, and auditing TimeCurrent time within specified error margins
20
Interoperability Multiple ORB vendors –Do you have to choose one? General Inter-ORB Protocol –Framework – without tranport –Internet Inter-ORB Protocol on TCP Message Types: –From client: Request, LocateRequest, CancelRequest –From server: Reply, LocateReply –Both: CloseConnection, MessageError, Fragment
21
CS603 CORBA March 29, 2002
22
CORBA Programming 1.Select and install an Object Request Broker –More later – examples based on ORBIX, C++ 2.Define the interfaces (IDL) 3.Create classes that implement interfaces 4.Write server function –Instantiates classes –Registers with ORB 5.Run Server 6.Write and Run Client
23
Ticket Office: IDL // IDL – file ticket.idl typedef float Price; struct Place { char row; unsigned long seat; }; Interface TicketOffice { readonly attribute string name readonly attribute unsigned long numberOfSeats Price getPrice (in Place chosenPlace); boolean bookSingleSeat (in Place chosenPlace, in string creditCard); };
24
Ticket Office: Compile IDL % idl –B –S ticket.idl // Produces several files: ticket.hh – C++ headers #include Typedef CORBA::Float Price; Struct Place { CORBA::Char row; CORBA::ULong seat; }; Class TicketOffice: public virtual CORBA::Object { public: Virtual char* name() throw (CORBA::SystemException); … Class TicketOfficeBOAImpl { … }; ticketC.C// stubs for clients ticketS.C// skeleton for server TicketOffice_i.h,.C// Outline of implementation
25
TicketOffice: Implementation Declaration class TicketOffice_i : public virtual TicketOfficeBOAImpl { char* m_name; Price m-highPrice; Price m-lowPrice; unsigned char** m_avail = {{1 1 1} {1 1 1} {1 1 1}}; public: TicketOffice_i (const char * theName, const Price theHighPrice, const Price theLowPrice); virtual ~TicketOffice_i(); virtual char* name() throw (CORBA::SystemException); virtual CORBA::ULong numberOfSeats() throw (CORBA::SystemException); virtual Price getPrice (const Place& chosenPlace) throw (CORBA::SystemException); virtual CORBA::Boolean bookSingleSeat (const Place& chosenPlace, const char* creditCard) throw (CORBA::SystemException); };
26
TicketOffice: Implementation #include “ticket_i.h” TicketOffice_i::TicketOffice_i (const char * theName, const Price theHighPrice, const Price theLowPrice) : m_highPrice(theHighPrice), m_lowPrice (theLowPrice) { m_name = new char[strlen(theName) + 1]; strcpy(m_name, theName); } TicketOffice_i::~TicketOffice_i() { delete[] m_name; } char* TicketOffice_i::name() throw (CORBA::SystemException) { return CORBA::string_dup(m_name); } CORBA::ULong TicketOffice::numberOfSeats() throw (CORBA::SystemException) { return 9; } Price TicketOffice::getPrice (const Place& chosenPlace) throw (CORBA::SystemException) { if (chosePlace.row == 1) return m_lowPrice; else return m_high_price; } CORBA::Boolean TicketOffice::bookSingleSeat ( const Place& chosenPlace, const char* creditCard) throw (CORBA::SystemException) { unsigned long rowIndex = chosenPlace.row – ‘A’; if (m_avail[rowIndex][chosePlace.seat]) { m_avail[rowIndex][chosePlace.seat] = 0; return 1; } else return 0; }
27
TicketOffice: Server #include “ticket_i.h” int main() { TicketOffice_i myTicketOffice( “Loeb”, 15.00, 10.00); CORBA::Orbix.impl_is_read(“TicketOfficeSrv”); } Following registers server so it is automatically started (or just run a.out) % putit TicketOfficeSrv a.out
28
TicketOffice: Client #include “Ticket.hh” int main() { TicketOffice_var toVar; tovar = TicketOffice::_bind(“:TicketOfficeSrv”); Place p = {‘B’, 1}; if (toVar->bookSingleSeat(p, “1234 5678”)) cout name() getPrice(p); else cout << “Seat B1 taken”; }
29
CS603 CORBA April 1, 2002
30
More on Registering a Server Registration – generic (not Orbix-specific) CORBA::ORB_ptr orb = “CORBA::ORB_init(argc, argv, “Orbix”); CORBA::BOA_ptr boa = orb->BOA_init (argc, argv, “Orbix_BOA); boa->impl_is_ready(“TicketOfficeSrv”); impl_is_ready defaults to waiting forever –impl_is_ready(name, ORBA::ULong timeOut); // return if idle for timeOut
31
Wrapping Existing Code TIE approach –Creates object that interfaces CORBA to identically declared existing C++ classes –Execute DEF_TIE macros to create/bind Multiple inheritance approach –CORBA interface implementation inherits BOAImpl Legacy class
32
Finding operations: Simple Binding Simple Optionally specify host Can specify additional information: Marker –Server myTicketOffice._marker(“Loeb”); myTicketOffice._bind(“TicketOffice”); –Client to_var p = to::_bind(“Loeb:TicketOffice”, “blitz”);
33
Finding Operations: Naming Service Database of bindings: name X object ref Naming context: Hierarchical structure A name is a sequence –typedef sequnce Name; –Struct NameComponent id – real name kind – application-specific information
34
Finding Operations: Naming Service NamingContext interface –Object resolve(in Name n) – get object given name raises ( NotFound, CannotProceed, InvalidName ); –Void bind(in Name n, in Object o) … -- bind object to name –Void bind_context(in Name n, in NamingContext nc) … – put name in context CosNaming interface –Struct Binding { Name binding_name; {nobject, ncontext} binding_type }; –Typedef sequence BindingList; –Interface NamingContext { void list (in unsigned long how_many, out BindingList bl, out BindingIterator bi); };
35
Naming: Use Create hierarchy of naming contexts –E.g., tourism: theatre, hotel, … Bind specific name to context –tourism.theatre.loeb Resolution: Create name and resolve –name = new CosNaming::Name(3); –name->length(3); –name[0].id = CORBA::string_dup(“tourism”); –name[0].kind = CORBA::string_dup(“”); –name[1].id = … LoebTicketOffices = namecontext->resolve(name); –Also facilities to iterate over or select from multiple results
36
More on IDL IDL supports inheritance, multiple inheritance –Implementations must do the same –Can redefine operations at implementation level Can forward reference / recursive types interface a; interface b { readonly attribute a a_inst }; interface a { … }; #include, #define, etc. supported
37
Object References Can pass objects Given class foo, get class foo_ptr (C++ pointer) –Must manually maintain reference counts foo_ptr p2 = p1;p2 = foo::_duplicate(p1); CORBA::release(p2); –Class foo_var: Automatically maintains reference counts –Use _ptr for parameters Passing objects: Server understands them –Parameters defined in IDL –Server must have valid implementation (including parameters) to invoke them
38
Casting Can assign object reference to object reference of parent class –Can’t use _var for target and _ptr for source Can Narrow: Assign object to child –child = child_class::_narrow(parent)
39
Dynamic Invocation (following syntax ORBIX-specific) Create an “on-the fly” reference CORBA::Object_ptr target = // any object CORBA::Request r(target, “operation”) r << CORBA::inMode << inparameter << CORBA::outMode << outparameter …; r.invoke(); Can use repository to identify name/parameters to construct request Only way to make deferred synchronous calls –r.send_deferred(), r.poll_response(), r.get_response() –Also r.send_oneway()
40
Dynamic Skeleton Interface Server equivalent of DII –Not required to use DII Intended for gateways –Server doesn’t understand calls it can process –Trusts client/server to generate legal calls –Translates to legacy server protocol
41
Security Policy Objects –Specify requirements Secure messaging Authentication / signing Trusted host list Security services –Know how to implement policy objects
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.