Download presentation
Presentation is loading. Please wait.
Published byOswin Bridges Modified over 9 years ago
1
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Lecture 38 of 42 Wednesday, 03 December 2008 William H. Hsu Department of Computing and Information Sciences, KSU KSOL course page: http://snipurl.com/v9v3http://snipurl.com/v9v3 Course web site: http://www.kddresearch.org/Courses/Fall-2008/CIS730http://www.kddresearch.org/Courses/Fall-2008/CIS730 Instructor home page: http://www.cis.ksu.edu/~bhsuhttp://www.cis.ksu.edu/~bhsu Reading for Next Class: Sections 22.1, 22.6-7, Russell & Norvig 2 nd edition Vision, Part 2 of 2 Discussion: Machine Problem 7
2
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Vision Outline Physiology of Vision (1 lecture) Overview of Human Visual Percetion (1 lecture) Need presenter for Monday! Part I: Low-level vision (images as texture) Texture segmentation, image retrieval, scene models, “Bag of words” representations Part II: Mid-level vision (segmentation) Principles of grouping, Normalized Cuts, Mean-shift, DD-MCMC, Graph-cut, super-pixels Part III: 2D Recognition Window scanning (Schniderman+Kanade, Viola+Jones) Correspondence Matching (schanfer matching, housedorf distance, shape contexts, invariant features, active appearance models) Recognition with Segmentation (top-down + buttom-up) Words and Pictures http://www.cs.cmu.edu/~efros/courses/AP06/
3
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence So what do humans care about? slide by Fei Fei, Fergus & Torralba
4
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Verification: is that a bus? slide by Fei Fei, Fergus & Torralba
5
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Detection: are there cars? slide by Fei Fei, Fergus & Torralba
6
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Identification: is that a picture of Mao? slide by Fei Fei, Fergus & Torralba
7
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Object categorization sky building flag wall banner bus cars bus face street lamp slide by Fei Fei, Fergus & Torralba
8
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Scene and context categorization outdoor city traffic … slide by Fei Fei, Fergus & Torralba
9
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Rough 3D layout, depth ordering
10
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Challenges 1: view point variation Michelangelo 1475-1564
11
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Challenges 2: illumination slide credit: S. Ullman
12
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Challenges 3: occlusion Magritte, 1957
13
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Challenges 4: scale slide by Fei Fei, Fergus & Torralba
14
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Challenges 5: deformation Xu, Beihong 1943
15
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Challenges 6: background clutter Klimt, 1913
16
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Challenges 7: object intra-class variation slide by Fei-Fei, Fergus & Torralba
17
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Challenges 8: local ambiguity slide by Fei-Fei, Fergus & Torralba
18
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Challenges 9: the world behind the image
19
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence In this course, we will: Take a few baby steps…
20
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Physiology of Vision: a swift overview 16-721: Learning-Based Methods in Vision A. Efros, CMU, Spring 2007 Some figures from Steve Palmer
21
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Class Introductions Name: Research area / project / advisor What you want to learn in this class? When I am not working, I ______________ Favorite fruit:
22
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Image Formation Digital Camera The Eye Film
23
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Monocular Visual Field: 160 deg (w) X 135 deg (h) Binocular Visual Field: 200 deg (w) X 135 deg (h)
24
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Figures © Stephen E. Palmer, 2002 What do we see? 3D world2D image
25
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence What do we see? 3D world2D image Painted backdrop
26
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence The Plenoptic Function Q: What is the set of all things that we can ever see? A: The Plenoptic Function (Adelson & Bergen) Let’s start with a stationary person and try to parameterize everything that he can see… Figure by Leonard McMillan
27
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Grayscale snapshot is intensity of light Seen from a single view point At a single time Averaged over the wavelengths of the visible spectrum (can also do P(x,y), but spherical coordinate are nicer) P( )
28
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Color snapshot is intensity of light Seen from a single view point At a single time As a function of wavelength P( )
29
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Spherical Panorama All light rays through a point form a ponorama Totally captured in a 2D array -- P( ) Where is the geometry??? See also: 2003 New Years Eve http://www.panoramas.dk/fullscreen3/f1.html
30
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence A movie is intensity of light Seen from a single view point Over time As a function of wavelength P( ,t)
31
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Space-time images x y t
32
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Holographic movie is intensity of light Seen from ANY viewpoint Over time As a function of wavelength P( ,t,V X,V Y,V Z )
33
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence The Plenoptic Function Can reconstruct every possible view, at every moment, from every position, at every wavelength Contains every photograph, every movie, everything that anyone has ever seen! it completely captures our visual reality! Not bad for a function… P( ,t,V X,V Y,V Z )
34
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence The Eye is a camera The human eye is a camera! Iris - colored annulus with radial muscles Pupil - the hole (aperture) whose size is controlled by the iris What’s the “film”? photoreceptor cells (rods and cones) in the retina
35
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence The Retina
36
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Retina up-close Light
37
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence © Stephen E. Palmer, 2002 Cones cone-shaped less sensitive operate in high light color vision Two types of light-sensitive receptors Rods rod-shaped highly sensitive operate at night gray-scale vision
38
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Rod / Cone sensitivity The famous sock-matching problem…
39
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence © Stephen E. Palmer, 2002 Distribution of Rods and Cones Night Sky: why are there more stars off-center?
40
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Electromagnetic Spectrum http://www.yorku.ca/eye/photopik.htm Human Luminance Sensitivity Function
41
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Why do we see light of these wavelengths? © Stephen E. Palmer, 2002 …because that’s where the Sun radiates EM energy Visible Light
42
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Retinal Processing © Stephen E. Palmer, 2002
43
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Single Cell Recording Microelectrode Amplifier Electrical response (action potentials) mV © Stephen E. Palmer, 2002
44
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Single Cell Recording © Stephen E. Palmer, 2002
45
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Retinal Receptive Fields Receptive field structure in ganglion cells: On-center Off-surround Stimulus condition Electrical response © Stephen E. Palmer, 2002
46
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Receptive field structure in ganglion cells: On-center Off-surround Stimulus condition Electrical response Retinal Receptive Fields © Stephen E. Palmer, 2002
47
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Receptive field structure in ganglion cells: On-center Off-surround Stimulus condition Electrical response Retinal Receptive Fields © Stephen E. Palmer, 2002
48
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Receptive field structure in ganglion cells: On-center Off-surround Stimulus condition Electrical response Retinal Receptive Fields © Stephen E. Palmer, 2002
49
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Receptive field structure in ganglion cells: On-center Off-surround Stimulus condition Electrical response Retinal Receptive Fields © Stephen E. Palmer, 2002
50
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Receptive field structure in ganglion cells: On-center Off-surround Stimulus condition Electrical response Retinal Receptive Fields © Stephen E. Palmer, 2002
51
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence RF of On-center Off-surround cells Retinal Receptive Fields © Stephen E. Palmer, 2002
52
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence RF of Off-center On-surround cells Retinal Receptive Fields © Stephen E. Palmer, 2002 Surround Center
53
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Retinal Receptive Fields
54
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Receptive field structure in bipolar cells Light Retinal Receptive Fields © Stephen E. Palmer, 2002
55
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Receptive field structure in bipolar cells Retinal Receptive Fields © Stephen E. Palmer, 2002
56
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence © Stephen E. Palmer, 2002 Visual Cortex aka: Primary visual cortex Striate cortex Brodman’s area 17 Cortical Area V1
57
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Single-cell recording from visual cortex David Hubel & Thorston Wiesel © Stephen E. Palmer, 2002
58
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Single-cell recording from visual cortex © Stephen E. Palmer, 2002
59
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Three classes of cells in V1 Simple cells Complex cells Hypercomplex cells © Stephen E. Palmer, 2002
60
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Simple Cells: “Line Detectors” © Stephen E. Palmer, 2002
61
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Simple Cells: “Edge Detectors” © Stephen E. Palmer, 2002
62
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Constructing a line detector © Stephen E. Palmer, 2002
63
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Complex Cells 0o0o © Stephen E. Palmer, 2002
64
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Complex Cells 60 o © Stephen E. Palmer, 2002
65
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Complex Cells 90 o © Stephen E. Palmer, 2002
66
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Complex Cells 120 o © Stephen E. Palmer, 2002
67
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Constructing a Complex Cell © Stephen E. Palmer, 2002
68
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Hypercomplex Cells © Stephen E. Palmer, 2002
69
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Hypercomplex Cells © Stephen E. Palmer, 2002
70
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Hypercomplex Cells © Stephen E. Palmer, 2002
71
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Hypercomplex Cells “End-stopped” Cells © Stephen E. Palmer, 2002
72
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields “End-stopped” Simple Cells © Stephen E. Palmer, 2002
73
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Cortical Receptive Fields Constructing a Hypercomplex Cell © Stephen E. Palmer, 2002
74
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Mapping from Retina to V1
75
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Why edges? So, why “edge-like” structures in the Plenoptic Function?
76
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Because our world is structured!
77
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Problem: Dynamic Range 1500 1 1 25,000 400,000 2,000,000,000 The real world is High dynamic range
78
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence pixel (312, 284) = 42 Image 42 photos? Is Camera a photometer?
79
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Long Exposure 10 -6 10 6 10 -6 10 6 Real world Picture 0 to 255 High dynamic range
80
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Short Exposure 10 -6 10 6 10 -6 10 6 Real world Picture 0 to 255 High dynamic range
81
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Varying Exposure
82
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence What does the eye sees? The eye has a huge dynamic range Do we see a true radiance map?
83
Computing & Information Sciences Kansas State University Wednesday, 03 Dec 2008CIS 530 / 730: Artificial Intelligence Eye is not a photometer! "Every light is a shade, compared to the higher lights, till you come to the sun; and every shade is a light, compared to the deeper shades, till you come to the night." — John Ruskin, 1879
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.