Download presentation
Presentation is loading. Please wait.
Published bySamuel Waters Modified over 9 years ago
1
KITPC Program on Neutrino Physics 2008.9.1-9.21 Nearly Tri-bimaximal Mixing & Small Masses of Neutrinos Yue-Liang Wu Kavli Institute for Theoretical Physics China (KITPC) Institute of Theoretical Physics Chinese Academy of Sciences
2
78 Years Old Neutrino 1930 Pauli (30 years old) : Neutrino with s=1/2 、 NWIP 、 m < m_e To solve energy conservation problem and spin- statistical problem involved in decay 1933 Fermi: H_3 He_3 + e + anti- 1957 T.D.Lee & C.N.Yang: Parity Non-conservation (NP) C.S. Wu : Experimental Test 1957 Landau, Lee & Yang, Salam Two Component Theory of Massless Neutrino m_ =0, Maximal Parity Violation 1958 Feynman-Gell-Mann, Marshak-Sudarshan V-A Theory 1967 GWS Standard Model : SU(2)_L x U(1) (NP) Based on Massless Neutrinos
3
1957 Pontecorvo Massive neutrinos 、 Neutrino Mixing & Oscillations _e anti- _e 1957 R.Davis: Reactor Experiment anti- + Cl_37 e + Ar_37 1962 Lederman, Schwartz & Steinberge Observed _ at Brookhaven (NP) 1962 MNS – Maki-Nakagawa-Sakata Lepton Mixing Angle: 1967 Pontecorvo _e _ Solar Neutrino Puzzle: ½
4
1967 R. Davis Solar Neutrino Experiment (NP) 1969 Gribov & Pontecorvo Majorana-type Neutrino Mixing 1976 Bilenky & Pontecorvo Dirac-type Neutrino Mixing 1978 L. Wolfenstein; 1986 S.P. Mikheyev and A. Yu. Smirnov Matter Effects of Neutrino Oscillations (MSW) 1979 See-Saw Mechanism & GUTs 1994 : ‘1 , 3 , 5 ’ - Massive , ‘ 2 , 4 , 6 ’ - Massless , 7 - No think 1998.6 Super-Kamiokande Experiment Evidence of Massive Neutrinos & Neutrino Oscillations Answer Question: Massive or Massless?
5
Unknown Questions: Neutrinos are Dirac or Majorana ? Absolute Values of Neutrino Masses ? Hierarchy or Degeneracy ? CP Violation in Lepton-Neutrino Sector ? How Many Neutrinos , Sterile Neutrinos ? Leptogenesis and Matter-Antimatter Asymmetry ? Rules of Neutrino in Astrophysics and Cosmology ?
6
Theoretical Questions Why neutrino masses are so small Why neutrino mixings are so large in comparison with quark mixings 23 is exactly maximal ? 13 ? , U e3 0 ? Mass hierarchy m 31 2 > 0 ? m 31 2 < 0 ?
7
Flavor changing at 5.3 arXiv:nucl-ex/0610020 Electron neutrino generated from Sun Solar Neutrino: SNO
8
Oscillation parameters : arXiv:0801.4589 A scaled reactor spectrum without distortions from neutrino oscillation is excluded at more than 5σ! Reactor neutrino: KamLAND
9
Atmosphere Neutrino: Super-K Oscillation parameters :
10
J. Valle et al. hep-ph/0405172, updated at Sep 2007 Solar : Super-K, SNO Atmosphere : Super-K Reactor:KamLAND, CHOOZ Accelerator:K2K , MINOS General Formalism : Neutrino Oscillation
11
1. Dirac / Majorana Neutrinoless Double Beta Decay 2. Mass scale: m 1 Neutrinoless Double Beta Decay, Single Beta Decay, Cosmology 3. Sterile neutrinos, LSND? Excludes at 98% CL two- neutrino appearance oscillations as an explanation of the LSND anomaly. arXiv:0704.1500 MiniBooNE (3+1): inconsistency at the level of 4σ. (3+2),(3+3): severe tension at the level of more than 3σ. arXiv:0705.0107 Issues in Neutrino Physics
12
2. Single Beta Decay 3. Neutrinoless Double Beta Decay 1. Cosmology (CMB+LSS): Planck: 0.025-0.1 eV KATRIN: 0.2 eV CUORE: 0.02-0.1 eV Strumia-Vissani arXiv:hep-ph/0503246 Neutrino Masses
13
3σ arXiv:hep-ex/0509019 Kam-Biu Luk, Jan 8 2007 Int'l Symp on Neutrino Physics and Neutrino Cosmology Global fits:
14
N Fukugita & Yanagida (1986): Leptogenesis Mechanism Type II? Type III? Seesaw Mechanism
15
S or A may be Dark Matter! R. Barbieri, L. Hall and V.S. Rychkov, PRD 74, 015007, 2007 E. Ma, PRD 73, 077301, 2006 3 loop generation of neutrino masses: L.M. Krauss, S. Nasri and M. Trodden, PRD 67, 085002, 2003 Right-handed neutrino as Dark Matter! Other Mechanism for Neutrino Masses Two Higgs doublets Model:
16
Tri-Bimaximal Mixing: (Harrison,Perkins and Scott) Friedberg-Lee Symmetry: Invariant under Friedberg-Lee symmetry: hep-ph/0606071 z a space-time independent constant element of the Grassmann algebra Some papers : Xing, Zhang, Zhou, PLB641 Luo, Xing, PLB 646 C.S. Huang, T.J. Li, W. Liao and S.H. Zhu, arXiv:0803.4124 Family Symmetry
17
F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. {\bf B 530}, 167 (2002) Z.-Z. Xing, Phys. Lett. {\bf B533}, 85(2002). P. F. Harrison and W.G. Scott, Phys. Lett. {\bf B535},163(2002). P.F. Harrison and W. G. Scott, Phys. Lett. {\bf B557},76(2003). X. G. He and A. Zee, Phys. Lett. {\bf B560}, 87(2003). C.I. Low and R. R. Volkas, Phys. Rev. {\bf D68}, 033007 (2003). E. Ma, Phys. Rev. {\bf D70}, 031901R(2004); E.Ma, hep-ph/0701016 G. Altarelli and F. Feruglio, Nucl. Phys. {\bf B720}, 64(2005); E. Ma, Phys. Rev. D72, 037301 (2005).; E. Ma, Mod.\ Phys.\ Lett.\ A 20, 2601 (2005) A. Zee, Phys. Lett. {\bf B630}, 58 (2005). E. Ma, Phys.\ Rev.\ D {\bf 73}, 057304 (2006). G. Altarelli and F. Feruglio, Nucl. Phys. {\bf B741}, 215(2006). W. Grimus and L. Lavoura, {\bf JHEP}, 0601:018(2006). J.E. Kim and J.-C. Park, {\bf JHEP} 0605:017(2006). N. Singh, M. Rajkhowa and A. Borach, hep-ph/0603189. R. Mohapatra, S. Naris and Y.-H. Yu, Phys.Lett. {\bf B639} 318 (2006). P. Kovtun and A. Zee, Phys.Lett. {\bf B640} (2006) 37. N. Haba, A. Watanabe and K. Yoshioka, Phys.Rev.Lett. 97 (2006) 041601. X.G. He, Y.Y. Keum and R. Volkas, {\bf JHEP}, 0604:039(2006). Varizelas, S.-F. King and G.G. Ross, Phys.Lett. B644 (2007) 153. R. Friedberg and T. D. Lee, arXiv:hep-ph/0606071; arXiv:hep-ph/0705.4156 B.Hu, F. Wu and Y.L. Wu, Phys.Rev. {\bf D75} 113003 (2007).
18
SO(3) Gauge Model Exact Discrete symmetry Tri-bimaximal with 13 = 0 Experimental Data (99%) Gauge Symmetry has been well tested
19
Why SO(3) Gauge Model? YLW arXiv:0708.0867, PRD 2008 Why lepton sector is so different from quark sector ? Neutrinos are neutral fermions and can be Majorana! Majorana fermions only have real representations They possess orthogonal symmetry Invariant Lagrangian for Yukawa Interactions
20
Uniqueness of Lagrangian & New Particles Symmetry
21
SO(3) Expression of Tri-triplet Higgs Bosons In terms of SO(3) representation:
22
Symmetry as Subgroup of SO(3) Discrete symmetric group: Cyclic permutation group: Coset space : Cyclic permuted form: with i+j-1 mod. 3
23
Why Local SO(3) Symmetry Fixing Gauge: invariant Lagrangian In terms of SO(3) Representation
25
Vacuum Structure With the given fixing gauge:
26
Type-II like (generalized) see-saw mechanism For neutrinos: For charged leptons:
27
Global U(1) Family Symmetries For Infinite Large Majorana neutrino masses Majorana neutrinos decouple Generating global U(1) family symmetries U(1)_1 x U(1)_2 x U(1)_3 Large but Finite Majorana Neutrino Masses ???
28
Small Mass and Large Mixing of Neutrinos Approximate global U(1) family symmetries Smallness of neutrino masses and charged lepton mixing Neutrino mixings could be large !!!
29
Nearly Tri-bimaximal neutrino mixings Neutrino and charged lepton mixings: ≈
30
Lepton Mixing Matrix and Neutrino Masses CKM-like Lepton mixing: Neutrino Masses Heavy Majorana Masses
31
Numerical Results 4 Parameters: / / Two inputs: Neutrino masses with given parameter
32
Considering the hierarchy: One parameter in Vacuum: Interesting case: Two cases for charged lepton mixing:
33
Numerical results for given parameter
34
Taking Optimistic Predictions Which can be detected by the future neutrino Experiments, like Daya Bay
35
Vector-Like Heavy Neutrino and Charged Lepton Masses Taking and It leads to and Taking The lightest vector-like charged lepton mass Which may be detected at LHC/ILC
36
Summary Smallness of neutrino masses and charged lepton mixing could be understood from approximate global U(1) family symmetries Tri-bimaxiaml neutrino mixing is obtainable from the vacuum structure of SO(3) gauge symmetry 13 is in general non-zero and testable at the experimental sensitivity Some of the vector-like fermions could have masses at electroweak scale and be probed at LHC The mechanism can simply be extended to quark sector for smallness of quark mixing
37
THANKS THANKS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.