Download presentation
Presentation is loading. Please wait.
Published byRebecca Hawkins Modified over 9 years ago
1
Transmutation of Spent Nuclear Fuel utilizing Spallation Reactions John Freiderich NCSS 07/27/2006
2
Introduction Accumulated Spent Nuclear Fuel Over 40k metric tons Spallation Transmutation
3
Spallation What does this entail? Incident Particle Target Nucleus Goal: Generate Neutrons
4
Cross-Section Incident Particles Charged Particles Uncharged Particles
5
Mass Partitions
6
Two-Step Nucleon Production First Step Penetration Intranuclear Cascade Second Step De-excitation of Compound Nucleus Evaporation of nucleons and light nuclei Fission
7
Intranuclear Cascade
8
Spent Nuclear Fuel Prediction: Enrico Fermi (1940s) Today Criticality Concerns Decay Heat Management Radioactive Waste Handling Seen as Primary Problems
9
Products of Nuclear Waste Radio nuclides 90 Sr, 137 Cs 239 Pu, 242 Pu, 237 Np, 129 I, 135 Cs and 99 Tc Mobility & Half-lives
10
Transmutation Transforming the Nucleus Neutron Absorption
11
Neutron Absorption Induced through Sub-critical System Accelerator-Driven System (ADS) External Source of Neutrons
12
Chemical Reprocessing Aqueous Separations Remove 238 U and some other fission products
13
ADS Schematic
14
Conclusion Exponential growth in Energy Demand Spallation provides neutron source
15
Inquiries?
16
References [1]Benlliure, J.; Schmidt, K.-H. Basic nuclear data for nuclear waste transmutation and radioactive nuclear beam production. Nucl. Phys. A. 2004, 746, 281c-287c. [2]Bernas, M.; Armbruster, P.; Benlliure, J.; Boudard, A.; Casarejos, E.; Enqvist, T.; Kelic, A.; Legrain, R.; Leray, S.; Pereira, J.; Rejmund, F.; Ricciardi, M.-V.; Schmidt, K.-H.; Stéphan, C.; Taieb, J.; Tassan-Got, L.; Volant, C. Very heavy fission fragments produced in the spallation reaction 238U+p at 1 A GeV. Nucl. Phys. A. 2005, 765, 197-210. [3]Friedlander, G.; Kennedy, J. W.; Macias, E. S.; Miller, J. M. Nuclear and Radiochemistry, 3rd edition; John Wiley and Sons: New York, 1981; 171- 176. [4](a) Gudowski, W. Transmutation of Nuclear Waste. Nucl. Phys. A. 2000, 663&664, 169c-182c. (b) Accelerator-driven Transmutation Projects. The Importance of Nuclear Physics Research for Waste Transmutation. Nucl. Phys. A. 1999, 654, 436c-457c. [5]Loveland, W.; Morrissey, D.J.; Seaborg, G.T. Modern Nuclear Chemistry; John Wiley and Sons: New Jersey, 2006; 288-290. [6]Mueller, A. C. Nuclear waste incineration and accelerator aspects from the European PDS-XADS study. Nucl. Phys. A. 2005, 751, 453c-468c.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.