Download presentation
Presentation is loading. Please wait.
Published byHarriet Lloyd Modified over 8 years ago
1
Number System
2
Popular number systems Decimal. (Base 10). The system that we humans are most familiar with. Binary. (Base 2). Octal. (Base 8). Hexadecimal. (Base 16).
3
Decimal system Digits: 0 1 2 3 4 5 6 7 8 9 A positive number can be expressed as a sum of power of 10. Example, 8253 8253 = 8x10 3 + 2x10 2 + 5x10 1 + 3x10 0 = 8000 + 200 + 50 + 3 [10 0 = 1] Powers of 10 are called the place values of digit.
4
Decimal fractional numbers may also be expressed as power of 10. Example, 837.526 837.526 = 8x10 2 + 3x10 1 + 7x10 0 + 5x10 -1 + 2x10 -2 + 6x10 -3 = 800 + 30 + 7 + 0.5 + 0.02 + 0.006 Any digit to the right of decimal point can be expressed as negative power of 10.
5
Binary system Digits: 0 and 1 (total 2 bits, a bit is a short of binary digit). It’s a sequence of bits. The place values of the bits are power of 2. [0=0] [1=1] [2=10] [3=11] [4=100] [5=101] [6=110] [7=111] [8=1000] [9=1001] [10=1010] [11=1011] [12=1100] Example (binary-to-decimal), 1001 9 = 1x2 3 + 0x2 2 + 0x2 1 + 1x2 0 Example (binary-to-decimal), 101.11 5.75 = 1x2 2 + 0x2 1 + 1x2 0 + 1x2 -1 + 1x2 -2
6
Decimal to binary, (example 109.78125) First convert a) non-fractional part and then b) fractional part. a) conversion of 109: 2)109 2)54……………………..1 2)27……………………..0 2)13……………………..1 2)6……………………..1 2)3……………………..0 2)1……………………..1 0…………………..…1 Ans (a): 1101101
7
b) conversion of 0.78125: 0.78125 x 2 = 1.56250 …………..1 0.56250 x 2 = 1.1250 …………....1 0.1250 x 2 = 0.250 ……………..0 0.250 x 2 = 0.50 …..…………..0 0.50 x 2 = 1.0 ………………..1 Ans (b): 0.11001 So full answer is (a) + (b) = 1101101.11001
8
Octal system Digits: 0 1 2 3 4 5 6 7 [0=0] [1=1] [2=2] [3=3] [4=4] [5=5] [6=6] [7=7] [8=10] [9=11] [10=12] Example (octal-to-decimal), 147 103 = 1x8 2 + 4x8 1 + 7x8 0 Example (octal-to-decimal), 45.23 37.296875 = 4x8 1 + 5x8 0 + 2x8 -1 + 3x8 -2
9
Decimal to octal,, (example 37.296875) First convert a) non-fractional part and then b) fractional part. a) conversion of 37: 8)37 8)4…..…………………..5 0….…………………..4 Ans (a): 45 b) conversion of 0.296875: 0. 296875 x 8 = 2.375 …………..2 0.375 x 8 = 3.0 ………….….3 Ans (b): 0.23 So full answer is (a) + (b) = 45.23
10
Hexadecimal system Digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F Here, A=10, B=11, C=12, D=13, E=14, F=15 [0=0] [1=1] [2=2] [3=3] [4=4] [5=5] [6=6] [7=7] [8=8] [9=9] [10=A] [11=B] [12=C] [13=D] [14=E] [15=F] [16=10] [17=11] Example (hexadecimal-to-decimal), 1AE 430 = 1x16 2 + 10x16 1 + 14x16 0 Example (hexadecimal-to-decimal), AB.23 171.13671875 = 10x16 1 + 11x16 0 + 2x16 -1 + 3x16 -2
11
Decimal to hexadecimal, (example 171.13671875 ) First convert a) non-fractional part and then b) fractional part. a) conversion of 171: 16)171 16)10…..………………..B 0….……………… A Ans (a): AB b) conversion of 0.13671875: 0. 13671875 x 16 = 2.1875 …………..2 0.1875 x 16 = 3.0 …..……….….3 Ans (b): 0.23 So full answer is (a) + (b) = AB.23
12
Binary Octal Example, 147 (octal) 147 001 100 111=1100111 (binary) Example, 1101010 (binary) 001101010=152 (octal)
13
Example, 27.A3C (hexadecimal) 27.A3C 0010 0111. 1010 0011 1100 = 100111.1010001111 (binary) Example, 11100.1011011011 (binary) 0001 1100. 1011 0110 1100 = 1C.B6C (hexadecimal) Binary Hexadecimal
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.