Download presentation
Presentation is loading. Please wait.
Published byNeal Cooper Modified over 9 years ago
1
Combinational Logic
2
Digital Circuits 2 4.1 Introduction Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of logic gates whose outputs at any time are determined from only the present combination of inputs.
3
Digital Circuits 3 4.2 Combinational Circuits Logic circuits for digital system Sequential circuits contain memory elements the outputs are a function of the current inputs and the state of the memory elements the outputs also depend on past inputs
4
Digital Circuits 4 A combinational circuits 2 n possible combinations of input values Specific functions Adders, subtractors, comparators, decoders, encoders, and multiplexers MSI circuits or standard cells Combinational Logic Circuit n input variables m output variables
5
Digital Circuits 5 A straight-forward procedure F 2 = AB+AC+BC T 1 = A+B+C T 2 = ABC T 3 = F2'T1 F 1 = T3+T2
6
Digital Circuits 6 F 1 = T 3 +T 2 = F 2 'T 1 +ABC = (AB+AC+BC)'(A+B+C)+ABC = (A'+B')(A'+C')(B'+C')(A+B+C)+ABC = (A'+B'C')(AB'+AC'+BC'+B'C)+ABC = A'BC'+A'B'C+AB'C'+ABC A full-adder F 1 : the sum F 2 : the carry
7
Digital Circuits 7 The truth table
8
Digital Circuits 8 4-4 Design Procedure The design procedure of combinational circuits State the problem (system spec.) determine the inputs and outputs the input and output variables are assigned symbols derive the truth table derive the simplified Boolean functions draw the logic diagram and verify the correctness
9
Digital Circuits 9 Functional description Boolean function HDL (Hardware description language) Verilog HDL VHDL Schematic entry Logic minimization number of gates number of inputs to a gate propagation delay number of interconnection limitations of the driving capabilities
10
Digital Circuits 10 Code conversion example BCD to excess-3 code The truth table
11
Digital Circuits 11 The maps
12
Digital Circuits 12 The simplified functions z = D' y = CD +C'D' x = B'C + B'D+BC'D' w = A+BC+BD Another implementation z = D' y = CD +C'D'= CD + (C+D)' x = B'C + B'D+BC'D‘ = B'(C+D) +B(C+D)' w = A+BC+BD
13
Digital Circuits 13 The logic diagram
14
Digital Circuits 14 Full-Adder The arithmetic sum of three input bits three input bits x, y: two significant bits z: the carry bit from the previous lower significant bit Two output bits: C, S
15
Digital Circuits 15
16
Digital Circuits 16 S = x'y'z+x'yz'+ xy'z'+xyz C = xy + xz + yz S = z (x y) = z'(xy'+x'y)+z(xy'+x'y)' = z'xy'+z'x'y+z((x'+y)(x+y')) = xy'z'+x'yz'+xyz+x'y'z C = z(xy'+x'y)+xy = xy'z+x'yz+ xy
17
Digital Circuits 17 Binary adder
18
Digital Circuits 18 Binary subtractor A-B = A+(2’s complement of B) 4-bit Adder-subtractor M=0, A+B; M=1, A+B’+1
19
Digital Circuits 19 4-8 Magnitude Comparator The comparison of two numbers outputs: A>B, A=B, A<B Design Approaches the truth table 2 2n entries - too cumbersome for large n use inherent regularity of the problem reduce design efforts reduce human errors
20
Digital Circuits 20 Algorithm -> logic A = A 3 A 2 A 1 A 0 ; B = B 3 B 2 B 1 B 0 A = B if A 3 = B 3, A 2 = B 2, A 1 = B 1 and A 0 = B 0 equality: x i = A i B i + A i 'B i ' (A = B) = x 3 x 2 x 1 x 0 (A>B) = A 3 B 3 '+x 3 A 2 B 2 '+x 3 x 2 A 1 B 1 '+x 3 x 2 x 1 A 0 B 0 ' (A<B) = A 3 'B 3 +x 3 A 2 'B 2 +x 3 x 2 A 1 'B 1 +x 3 x 2 x 1 A 0 'B 0 Implementation x i = (A i B i '+A i 'B i )'
21
Digital Circuits 21 Fig. 4.17 Four-bit magnitude comparator.
22
Digital Circuits 22 Combinational logic implementation each output = a minterm use a decoder and an external OR gate to implement any Boolean function of n input variables
23
Digital Circuits 23 Demultiplexers a decoder with an enable input receive information on a single line and transmits it on one of 2 n possible output lines Fig. 4.19 Two-to-four-line decoder with enable input
24
Digital Circuits 24 4-12 HDL Models of Combinational Circuits ▓ Modeling Styles:
25
Digital Circuits 25 Gate-level Modeling ▓ The four-valued logic truth tables for the and, or, xor, and not primitives
26
Digital Circuits 26 Gate-level Modeling Example: output [0: 3] D; wire [7: 0] SUM; 1. The first statement declares an output vector D with four bits, 0 through 3. 2. The second declares a wire vector SUM with eight bits numbered 7 through 0.
27
Digital Circuits 27 HDL Example 4-1 ■ Two-to-one-line decoder
28
Digital Circuits 28 HDL Example 4-2 ■ Four-bit adder: bottom-up hierarchical description
29
Digital Circuits 29 HDL Example 4-2 (continued)
30
Digital Circuits 30 Three-State Gates ■ Statement: gate name (output, input, control); Fig. 4.31 Three-state gates
31
Digital Circuits 31 Three-State Gates ■ Examples of gate instantiation
32
Digital Circuits 32 Fig. 4.32 Two-to-one-line multiplexer with three-state buffers
33
Digital Circuits 33 Dataflow Modeling ■ Verilog HDL operators Example: assign Y = (A & S) | (B & ~S)
34
Digital Circuits 34 HDL Example 4.3 Dataflow description of a 2-to-4-line decoder
35
Digital Circuits 35 HDL Example 4-4 Dataflow description of 4-bit adder
36
Digital Circuits 36 HDL Example 4-5 Dataflow description of 4-bit magnitude comparator
37
Digital Circuits 37 HDL Example 4-6 Dataflow description of a 2-to-1-line multiplexer Conditional operator (?:) Condition ? True-expression : false-expression Example: continuous assignment assign OUT = select ? A : B
38
Digital Circuits 38 Behavioral Modeling if statement: if (select) OUT = A; Behavioral description of a 2-to-1-line multiplexer HDL Example 4-7
39
Digital Circuits 39 HDL Example 4-8 Behavioral description of a 4-to-1-line multiplexer
40
Digital Circuits 40 Writing a Simple Test Bench initial block Three-bit truth table
41
Digital Circuits 41 Writing a Simple Test Bench Interaction between stimulus and design modules
42
Digital Circuits 42 Writing a Simple Test Bench Stimulus module System tasks for display
43
Digital Circuits 43 Syntax for $dispaly, $write, and $monitor: Example:
44
Digital Circuits 44 HDL Example 4-9 Stimulus module
45
Digital Circuits 45 HDL Example 4-9 (Continued)
46
Digital Circuits 46 HDL Example 4-10 Gate-level description of a full adder
47
Digital Circuits 47 HDL Example 4-10 (Continued)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.