Download presentation
Presentation is loading. Please wait.
Published byTyrone Samson Austin Modified over 9 years ago
1
CPS216: Advanced Database Systems Notes 08:Query Optimization (Plan Space, Query Rewrites) Shivnath Babu
2
parse Query rewriting Physical plan generation execute result SQL query parse tree logical query planstatistics physical query plan Query Processing - In class order 2; 16.1 3; 16.2,16.3 1; 13, 15 4; 16.4—16.7
3
Roadmap Query optimization: problem definition Space of physical plans –Counting exercise Approaches for query optimization –Heuristic-based (Oracle calls them rule-based) –Cost-based –Hybrid Heuristics for query optimization (Query rewrites)
4
Query Optimization Problem Pick the best plan from the space of physical plans
5
The Space of Physical Plans is Very Large Algebraic equivalences Different physical operators for the same logical operator –nested loop join, hash join, sort-merge join –index-scan, table-scan Different plumbing details - pipelining vs. materialization Different tree shapes
6
A Plan Counting Exercise Work on blackboard
7
Approaches for Query Optimization Approach 1: Pick some plan –Bad plans can be really bad! Approach 2: Heuristics –Ex: maximize use of indexes (MySQL) Approach 3: Cost-based –“Enumerate”, find cost, pick best –Be smart about how you iterate through the plans. Why? Hybrid
8
Query Optimization in Practice Hybrid Use heuristics, called query rewrite rules –eliminate many of the really bad plans –avoid eliminating good plans Cost-based –Be smart about how you iterate through plans –Ex: dynamic programming, genetic search
9
parse Query rewriting Physical plan generation execute result SQL query parse tree logical query plan statistics physical query plan Initial logical plan “Best” logical plan Logical plan Rewrite rules
10
Why do we need Query Rewriting? Pruning the HUGE space of physical plans –Eliminating redundant conditions/operators –Rules that will improve performance with very high probability Preprocessing –Getting queries into a form that we know how to handle best Reduces optimization time drastically without noticeably affecting quality
11
Query Rewrite Rules Transform one logical plan into another –Do not use statistics Equivalences in relational algebra Push-down predicates Do projects early Avoid cross-products if possible Use left-deep trees Use of constraints, e.g., uniqueness
12
Example Query Select B,D From R,S Where R.A = “c” R.C=S.C
13
Example: Parse Tree SELECT FROM WHERE AND B R S R.A=“c” R.CS.C= D Select B,D From R,S Where R.A = “c” R.C=S.C
14
Along with Parsing … Semantic checks –Do the projected attributes exist in the relations in the From clause? –Ambiguous attributes? –Type checking, ex: R.A > 17.5 Expand views
15
Initial Logical Plan Relational Algebra : B,D [ R.A=“c” R.C = S.C (RXS)] Select B,D From R,S Where R.A = “c” R.C=S.C B,D R.A = “c” Λ R.C = S.C X RS
16
Apply Rewrite Rule (1) B,D [ R.C=S.C [ R.A=“c” (R X S)]] B,D R.A = “c” Λ R.C = S.C X RS B,D R.A = “c” X RS R.C = S.C
17
Apply Rewrite Rule (2) B,D [ R.C=S.C [ R.A=“c” (R)] X S] B,D R.A = “c” X R S R.C = S.C B,D R.A = “c” X RS R.C = S.C
18
Apply Rewrite Rule (3) B,D [[ R.A=“c” (R)] S] B,D R.A = “c” R S B,D R.A = “c” X R S R.C = S.C Natural join
19
Equivalences in Relational Algebra R S =SR Commutativity (R S) T = R(S T) Associativity Also holds for: Cross Products, Union, Intersection R x S = S x R (R x S) x T = R x (S x T) R U S = S U R R U (S U T) = (R U S) U T
20
Rules: Project Let: X = set of attributes Y = set of attributes XY = X U Y xy (R) = x [ y (R)]
21
Let p = predicate with only R attribs q = predicate with only S attribs m = predicate with only R,S attribs p (R S) = q (R S) = Rules: combined [ p (R)] S R [ q (S)]
22
Rules: combined (continued) p q (R S) = [ p (R)] [ q (S)] p q m (R S) = m [ ( p R) ( q S) ] pvq (R S) = [ ( p R) S ] U [ R ( q S) ]
23
p1 p2 (R) p1 [ p2 (R)] p (R S) [ p (R)] S R S S R x [ p (R)] x { p [ xz (R)] } Which are “good” transformations?
24
Conventional wisdom: do projects early Example: R(A,B,C,D,E) x={E} P: (A=3) (B=“cat”) x { p (R)} vs. E { p { ABE (R)} }
25
But: What if we have A, B indexes? B = “cat” A=3 Intersect pointers to get pointers to matching tuples
26
Bottom line: No transformation is always good Some are usually good: –Push selections down –Avoid cross-products if possible –Subqueries Joins
27
More Query Rewrite Rules Transform one logical plan into another –Do not use statistics Equivalences in relational algebra Push-down predicates Do projects early Avoid cross-products if possible Use left-deep trees Subqueries Joins Use of constraints, e.g., uniqueness
28
Avoid Cross Products (if possible) Which join trees avoid cross-products? If you can't avoid cross products, perform them as late as possible Select B,D From R,S,T,U Where R.A = S.B R.C=T.C R.D = U.D
29
Use Left Deep Plans What are some left-deep, right-deep, and bushy plans for this query? Why is this heuristic useful? –Reason #1: We maximize the possibility of using indexes –Reason #2: Better for nested-loop join What about hash joins? Homework: Construct examples where (i) right-deep plan is best, (ii) where bushy is best Select B,D From R,S,T,U Where R.A = S.A R.A=T.A R.A = U.A
30
More Query Rewrite Rules Transform one logical plan into another –Do not use statistics Equivalences in relational algebra Push-down predicates Do projects early Avoid cross-products if possible Use left-deep trees Subqueries Joins Use of constraints, e.g., uniqueness
31
SQL Query with an Uncorrelated Subquery Find the movies with stars born in 1960 MovieStar(name, address, gender, birthdate) StarsIn(title, year, starName) SELECT title FROM StarsIn WHERE starName IN ( SELECT name FROM MovieStar WHERE birthdate LIKE ‘%1960’ );
32
Parse Tree SELECT FROM WHERE IN title StarsIn ( ) starName SELECT FROM WHERE LIKE name MovieStar birthDate ‘%1960’
33
Generating Relational Algebra title StarsIn IN name birthdate LIKE ‘%1960’ starName MovieStar Two-argument selection
34
Rewrite Rule for Two-argument Selection with Conditions Involving IN Lexp IN Rexp Two-argument selection Lexp Rexp δ X
35
Applying the Rewrite Rule title StarsIn IN name birthdate LIKE ‘%1960’ starName MovieStar title starName=name StarsIn δ birthdate LIKE ‘%1960’ MovieStar name
36
Improving the Logical Query Plan title starName=name StarsIn name birthdate LIKE ‘%1960’ MovieStar title starName=name StarsIn δ birthdate LIKE ‘%1960’ MovieStar name
37
SQL Query with an Correlated Subquery MovieStar(name, address, gender, birthdate) StarsIn(title, year, starName) SELECT title FROM StarsIn WHERE starName IN ( SELECT name FROM MovieStar WHERE name LIKE ‘Tom%’ and year = birthdate + 30 );
38
parse Query rewriting Physical plan generation execute result SQL query parse tree logical query planstatistics physical query plan Query Processing - In class order 2; 16.1 3; 16.2,16.3 1; 13, 15 4; 16.4—16.7
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.