Presentation is loading. Please wait.

Presentation is loading. Please wait.

Rate of Diffusion and Effusion

Similar presentations


Presentation on theme: "Rate of Diffusion and Effusion"— Presentation transcript:

1 Rate of Diffusion and Effusion
Graham’s Law Rate of Diffusion and Effusion

2 Introduction When we first open a container of ammonia, it takes time for the odor to travel from the container to all parts of a room. This shows the motion of gases through other gases. In this case, ammonia gas, NH3, moves through air. This is an example of diffusion and effusion.

3 Introduction Diffusion is the tendency of a gas to move toward areas of lower density. Ammonia moving throughout a room. Effusion is the escape of a gas from a container from a small hole. Air escaping from a car tire.

4 Introduction In 1831, the Scottish physical chemist, Thomas Graham, first showed the relationship between the mass of a gas molecule and its rate of diffusion or effusion. This is called Graham’s Law. “The rate of effusion of a gas is inversely proportional to the square root of the gas’s molar mass.”

5 Introduction The law comes from the relationship between the speed, mass, and kinetic energy of a gas molecule. At a given temperature, the average kinetic energy of all gas molecules in a mixture is the same value. If gas A has KEA = ½mAvA2 If gas B has KEB = ½mBvB2 Then KEA = KEB ➙ ½mAvA2 = ½mBvB2

6 Introduction ½mAvA2 = ½mBvB2 mAvA2 = mBvB2 vA2 mB = vB2 mA vA2 mB =
The ½’s cancel out. mAvA2 = mBvB2 Get all speed and mass terms together. vA mB vB mA = Take the square root of both sides. vA mB vB mA = Simplify. vA mB vB mA = The speed of an individual gas molecule is inversely proportional to its mass.

7 Introduction vA mB vB mA = rateA mB rateB mA = rateA MB rateB MA =
If we extend this to all of the gas, the speed becomes the rate the mass becomes the molar mass Which leads us back to Graham’s Law: “The rate of effusion of a gas is inversely proportional to the square root of the gas’s molar mass.”

8 Application This is how we apply Graham’s law.
rateA MB rateB MA = This is how we apply Graham’s law. We compare the rates of effusion of different gases.

9 Example 1 rateH2 MO2 rateO2 MH2 = 32.00 g/mol 2.00 g/mol = = 16.00
Compare the rate of effusion of hydrogen gas to the rate of effusion of oxygen gas at a constant temperature. MH2 = 2.00 g/mol MO2 = g/mol rateH MO2 rateO MH2 = g/mol 2.00 g/mol = = = 4.00 Hydrogen gas effuses at a rate 4 times faster than oxygen.

10 Example 2 rateHe MA rateA MHe = (rateHe)2 MA (rateA)2 MHe =
A sample of helium, He, effuses through a porous container 6.04 times faster than does unknown gas A. What is the molar mass of the unknown gas? MHe = 4.00 g/mol rateHe = 6.04 MA = A g/mol rateA = 1.00 rateHe MA rateA MHe = (rateHe)2 MA (rateA) MHe = (MHe)(rateHe )2 (rateA)2 MA = (4.00 g/mol)(6.04 )2 (1.00)2 MA = = 146 g/mol

11 Summary Diffusion is the tendency of a gas to move toward areas of lower density. Effusion is the escape of a gas from a container from a small hole. Graham’s Law: the rate of effusion of a gas is inversely proportional to the square root of the gas’s molar mass. rateA MB rateB MA =


Download ppt "Rate of Diffusion and Effusion"

Similar presentations


Ads by Google