Download presentation
Presentation is loading. Please wait.
Published byEustace Morgan Modified over 9 years ago
1
Vertical Heating Structure of the MJO Based on TRMM Estimates and Multi-model Simulations UCLA Xianan Jiang Joint Institute for Regional Earth System Science & Engineering (JIFRESSE) / UCLA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 7 th Latent Heating Workgroup / NASA PMM Science Team Meeting, Aug 05, 2014
2
Wang (2005) x(East) PBL z y(South) EQ R-Low K-Low Sinking Warm R-Low CONV Wave-CISK Ekman-CISK WISHE Role of Diabatic Heating for the MJO “Stratiform-instability” “Radiation-convection feedback”
3
Jiang et al. 2011 MJO Phases hPa Observed Q 1 of the MJO
4
20 Yr Climatological Simulations (1991-2010 if AGCM) 6-hr, Global Output Vertical Structure, Physical Tendencies 20 Yr Climatological Simulations (1991-2010 if AGCM) 6-hr, Global Output Vertical Structure, Physical Tendencies Commitments: About 24 Modeling Groups with 27 AGCM and/or CGCMs Model MJO Fidelity Vertical structure Multi-scale Interactions: (e.g., TCs, Monsoon, ENSO) Model MJO Fidelity Vertical structure Multi-scale Interactions: (e.g., TCs, Monsoon, ENSO) UCLA/JPL X. Jiang D. Waliser UCLA/JPL X. Jiang D. Waliser 2-Day MJO Hindcasts YOTC MJO Cases E & F (winter 2009)* Time Step, Indo-Pacific Domain Output Very Detailed Physical/Model Processes 2-Day MJO Hindcasts YOTC MJO Cases E & F (winter 2009)* Time Step, Indo-Pacific Domain Output Very Detailed Physical/Model Processes Heat and moisture budgets Model Physics Evaluation (e.g. Convection/Cloud/BL) Short range Degradation Heat and moisture budgets Model Physics Evaluation (e.g. Convection/Cloud/BL) Short range Degradation Met Office P. Xavier J. Petch Met Office P. Xavier J. Petch 20-Day MJO Hindcasts YOTC MJO Cases E & F (winter 2009)* 3-hr, Global Output Elements of I & II 20-Day MJO Hindcasts YOTC MJO Cases E & F (winter 2009)* 3-hr, Global Output Elements of I & II MJO Forecast Skill State Evolution/Degradation Elements of I & II MJO Forecast Skill State Evolution/Degradation Elements of I & II NCAS/Walker in. N. Klingaman S. Woolnough NCAS/Walker in. N. Klingaman S. Woolnough *DYNAMO Case TBD I. II. III. Model ExperimentScience FocusExp. POC Vertical Structure and Diabatic Processes of the MJO: Global Model Evaluation Project MJO Task Force/YOTC and GASS www.ucar.edu/yotc/mjodiab.html
5
ModelHorizontal Resolution Vertical Resolution Cumulus SchemeNotes 101_NASAGMAO_GEOS50.625 o lon x 0.5 o lat72RAS (RAS; Moorthi & Suarez 1992) 203a_SPCCSM (CAM3 + POP)T42 (~2.8 o )30 Super-parameterization (Khairoutdinov & Randall 2003) 303b_SPCAMP_AMIPT4230(Khairoutdinov & Randall 2001)1986-2003 404_GISS_ModelE22.75 o lon x 2.2 o lat40Kim et al. (2012), Del Geino et al. (2012) 505_EC_GEM~1.4 o 64 607_MIROCT85 (~1.5 o )40Chikira scheme (Chikira and Sugiyama 2010) AMIP SST 1986- 2005 710_MRI-GCMT15948 (Pan and Randall 1998) 811_CWB_GFST119 (~1 o )40 (RAS; Moorthi & Suarez 1992) 914_PNU_CFSv1T62 (~2 o )64 (RAS; Moorthi & Suarez 1992) 1016_MPI_ECHAM6 (ECHAM6 + MPIOM)T63 ( ~2 o )47(Tiedtke 1989; Nordeng 1994) 1117_MetUM_GA3 1221_NCAR_CAM5 1322_NRL_NAVGEMv.01T359 (37km)42(Hong and Pan 1996; Han and Pan 2011) 1424_UCSD_CAMT42 (~ 2.8 o )30(Zhang & McFarlane 1995) 1527_NCEPCPC_CFSv2T126 (~ 1 o )64 (Hong & Pan 1998) 1631a_CNRM_AM T127 (~1.4 o )31Bougeault (1985) 1731b_CNRM_CM (CNRM_AM+ NEMO) 1831c_CNRM_ACM 1934_CCCma_CanCM4T63(?)35(?)(Zhang & McFarlane 1995) 2035_BCCAGCM2.1T42 (~2.8 deg)26(Wu et al 2011) 2136_FGOALS2.0-sR42 (2.8 o lonx1.6 o lat)26 (Tiedtke 1989; Nordeng 1994) 2237_NCHU_ECHAM5-SITT6331 (Tiedtke 1989; Nordeng 1994) 2339_TAMU_Modi-CAM4 (CCSM4)2.5 o lon x 1.9 o lat26 (Zhang & McFarlane 1995) Idealized tilted heating 2440_ACCESS (modified METUM)1.875 o lon x 1.25 o lat85(Gregory and Rowntree 1990) 2543_ISUGCMT42 (~ 2.8 o )18(Zhang & McFarlane 1995) 2644_LLNL_CAM5ZMMicro 2745_SMHI_ecearth3T255(80km)91IFS cy36r4 Participating GCMs for Climate Simulation (Exp Component I)
6
Lag-regression of rainfall with Indian Ocean ( 70-90E; 5S-5N ) base point 20-100day filtered dash line – 5 m/s Jiang et al. 2014
7
Skill Score by Rainfall Lag-Regression Pattern (Indian Ocean & western Pacific averaged) Top 25% models Bottom 25% models
8
Vertical MJO Structures in Good and Poor GCMs u ’ (m/s) T’ (k) w’ (hPa/s) Q’ (k/day) q’ (g/kg) (10 o S-10 o N) Good GCMs Poor GCMs ERA-Interim Jiang, X., et al., 2014: Vertical Structure and Physical Processes of the Madden-Julian Oscillation: Exploring Key Model Physics in Climate Simulations, JGR-Atmos, submitted.
9
GPM Rain/LH for MJO studies 0.1 deg, 30mins, 60S-60N GPM Improved rainfall observations, algorithms for LH estimates, to depict MJO processes and constrain GCM physics
11
“Pre-conditioning” of the Eastward Propagating MJO Rain (mm day -1 ) Divergence (s -1 ) Cloud water (10 -5 kg kg -1 ) Q’ (k/day) Specific humidity (g/kg) Rain (mm day -1 ) Jiang et al. 2011 MJO Phase 3
12
u’ (m/s) T’ (k) w’ (hPa/s) Q’ (k/day) q’(g/kg) Vertical structures of the MJO (ERA-Interim; lag-0 regression) Corr=0.79 Corr=0.77 Corr=0.51 Corr=0.78 Corr=0.70 Corr=0.65 Pattern Correlations of Vertical Profiles MJO Score Average Pattern Correlations of Five Variables Model Skill in Vertical Structure vs MJO Fidelity u’u’ T’ w’ Q’ q’ Jiang et al. 2014
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.