Download presentation
Presentation is loading. Please wait.
Published byPrimrose Dawson Modified over 9 years ago
2
QPOs ,准周期振荡 in Black Hole , Neutron Star X-ray Sources: X-ray bursts, accreting-powered pulsars Einstein’s Relativity in Strong Gravitation 张承民, 尹红星 National Astronomical Observatories Chinese Academy of Sciences, Beijing
3
OUTLINE OF TALK Introduction of RXTE Black Hole (BH) and Neutron Star (NS) in Low Mass X-ray Binary (LMXB) KHz Quasi Periodic Oscillation (QPO) Millisecond accreting-powered X-ray Pulsar Type-I X-ray Burst Oscillation QPOs of NS/BH X-ray Sources Theoretical Mechanisms---Strong Gravity Further Expectation
4
Binary X-ray Sources Normal Star + Compact Star 10,000 lyr, 300Hz/450Hz Micro-quasar, Radio jet 7 solar mass/optical
5
QPO frequencies discovered by RXTE 1996—2006 , reviewed by van der Klis 2005, 06 NBO, ~5 Hz HBO, ~20-70 Hz Hundred, ~100 Hz kHz, ~1000-Hz Burst oscillation, ~300 Hz Spin frequency, ~300 Hz Low, high QPO, ~0.1 Hz Etc. QPO: Quasi Periodic Oscillation 准周期振荡
6
Atoll and Z Sources --- LMXB CCD Accretion rate direction ~Eddington Accretion ~1% Eddington Accretion
7
Discovery: typical twin KHZ QPOs Sco x-1, van der Klis et al 1997 Separation ~300 Hz Typically: Twin KHz QPO Upper ν 2 = 1000 (Hz) Lower ν 1 = 700 (Hz) 18/25 sources
8
QPO v.s. Accretion rate relation SCO X-1, Van der Klis, 2005, 06 QPO frequency increases with the accretion rate QPO 轮廓随吸积率变宽 / 低,消失
9
最大值 Max : ν max =1329 Hz, van Straaten 2000 min: ~200 Hz KHz QPO Data , Atoll sources 平均值 /Distribution of kHz QPOs : QPO (Atoll) ~ QPO ( Z ) Zhang et al 2006; 原因?
10
kHz QPOs of Z Sources
11
Difference of twin kHz QPOs = const? Beat model by Miller, Lamb & Psaltis 1998
12
Saturation of kHz QPO frequency ? 4U1820-30, NASA W. Zhang et al, 1998 Kaaret, et al 1999 Swank 2004; Miller 2004 BH/ISCO: 3 Schwarzschild radius Innermost stable circular orbit NS/Surface: star radius, hard surface
13
Parallel Line Phenomenon kHz QPO - luminosity relation Similarity/Homogeneous ? Among the different sources, same source at the different time
14
kHz QPO v.s. Count rate kHz QPO corresponds to the position in CCD, to the accretion rate Mdot; QPO ~ Mdot, 1/B B ~ Mdot, proportional Cheng & Zhang, 1998/2000 Zhang & Kojima, 2006
15
Accreting millisecond X-ray pulsar --- SAX J1808.4-3658 (7 sources) Wijnands and van der Klis, 1998 Nature Wijnands et al 2003 Nature 4 sources by Markwardt et al. 2002a, 2003a, 2003b, Galloway et al. 2002
16
SAXJ 1808.4-3658 Twin kHz QPOs 700 Hz, 500 Hz Burst/spin: 401 Hz See, Wijnands 2006 Burst frequency ~ spin frequency ? , 2003 XTE 1807, kHz QPO, 191 Hz, Linares et al. 2005 F. Zhang et al. 2006
17
IGR J00291+5934 598.88 Hz, Markwardt 2004, 7 MSP sources
18
Spectrum of Type-I X-ray Burst frequency 4U1702-43, van der Klis 2006; Strohmayer and Bildsten 2003
19
Type-I X-ray Burst Type-I X-ray Burst, Lewin et al 1995/Bildsten 1998 Thermonuclear reaction on accreting NS surface (T/P, spot) Burst rise time: 1 second Burst decay time: 10-100 second Total energy: 10 39-40 erg. Eddington luminosity ! 4U1728-34, (363 Hz) Strohmayer et al 1996 362.5 Hz --- 363.9 Hz, in 10 second
20
Burst Oscillations
21
On the burst frequency Burst frequency increases ~ 2 Hz, drift. Decreasing is discovered From hot spot on neutron star kHz QPO separation ~ burst/spin frequency
22
Burst and Spin frequency XXXXXX 11 burst sources, Muno et al 2004 7 X-ray pulsars, Wijnands 2004; Chakrabarty 2004 kHz QPO separation=195 Hz/(spin=401 Hz) Burst and Spin frequency are similar
23
11 burst sources , Muno 2004
24
25 kHz QPO 源 3 rd kHz QPO ?
25
Low frequency QPO---kHz QPO 关系 Psaltis et al 1998, 1999 Belloni et al 2002; 2005 Empirical Relation ν HBO = 50. (Hz)(ν 2 /1000Hz) 1.9-2.0 ν HBO = 42. (Hz) (ν 1 /500Hz) 0.95-1.05 ν qpo = 10. (Hz) (ν 1 /500Hz) Low frequency QPO< 100 Hz FBO/NBO = 6-20 (Hz) HBO = 15-70 (Hz) ν 1 = 700. (Hz)(ν 2 /1000Hz) 1.9-2.0
26
Twin kHz QPO relations ν 1 = ~700. (Hz)(ν 2 /1000Hz) b b ~ 1.6 Atoll Source 4U1728 b ~ 1.8 Z Source Sco X-1 Zhang et al. 2006
27
Twin kHz QPO distribution
29
Low-high frequency QPO 关系 Warner 2006; Warner & Woudt 2004; Mauche 2002 + 27 CVs, 5 magnitude orders in QPOs Black holes White dwarfs, Cvs Neutron stars ? Zhang 2005: Model
30
Black Hole High Frequency QPOs HFQPO: 40-450 (Hz) Constant (stable) in frequency Mass/Spin/ Luminosity Pair frequency relation 3:2 Frequency-Mass relation: 1/M 7 BH sources, van der Klis 2006 Jets like Galactic BHs (McClintock & Remillard 2003) Different from those of NS’s ν k = (1/2π)(GM/r 3 ) 1/2 = (c/2πr) (R s /2r) 1/2 ν k ( ISCO ) = 2.2 (kHz) (M/Mסּ) -1 Miller, et al 1998 GRO J1655-40, XTE J1550-564 XTE 1650-5000, 4U1630-47 XTE 1859-226, H 1743-322 GRS 1915+105, 4/7 Sources Van der Klis 2006 Magnetosphere-disk instability noise: mechanism :? Genzel 2003; Auschenbach 2004; GC QPOs, 3:2
31
High Frequency QPOs in Black Hole LMXBs NameBH Mass(M sun )HF QPO (Hz)References GRO J1655-40~6300,4501,2 XTE J1550-564~10184,276 188,249~276 3,4 5 GRS 1915+105~1441,67 113,165 328 165 6 7(?) 8(?) 9 H 1743-322 ~ 160,240 166,242 10 11 XTE J1859+226~9150~20012 4U 1630-472 ~ 184 100~300 8 13 XTE J1650-500 ~ 110~27014
32
(Astro-ph/0408402[8]) H 1743-322[10] XTE J1650-500[14] 160 240 250
33
A comparison between high-frequency QPOs in BH LMXBs and those in NS LMXBs QPOs in NS LMXBs QPOs in BH LMXBs Twin kHz QPOsYes RatioNot a constant~3:2 Spectra indexSoftHard, saturation PulsationsYesNo Type I X-ray bursts YesNo 1/M scalingNo?yes ChangesIncrease with LxRelatively stable
34
STELLAR Black Hole—Micro-quasar GRS 1915+105 41:67 Hz, 33 solar mass 10,000 lyr, 300Hz:450Hz=2:3 Microquasar, Radio jet 7 solar mass/optical
35
QPO and Break Frequency
36
Theoretical Consideration Strong Gravity: Schwarzschild Radius: R s =2GM/c 2 Innermost Stable Circular Orbit R Isco = 3R s Strong Magnetic: 10 8-9 Gauss (Atoll, Z-sources) Beat Model: Kepler Frequency Difference to Spin frequency Accretion Flow around NS/BH Hard surface ?
37
QPO Models Titarchuk and cooperators ’ Model transition layer formed between a NS surface and the inner edge of a Keplerian disk, QPO: magnetoacoustic wave (MAW), Keplerian frequency. Low-high frequency relation 0.08 ratio Abramovicz and cooperators ’ Model non-linear resonance between modes of accretion disk oscillations HFQPO: Stella black hole QPO, 3:2 relation Wang, DX, 2003, positions Miller, Lamb & Psaltis ’ Beat Model, developed from Alpar & Shaham 1985 Nature ; Lamb et al 1985 Nature Relativistic precession model by Stella & Vietri 1999
38
Theoretical Models Beat Model (HBO), ν HBO = ν kepler - ν spin ν Kepler ≈ r -3/2 is the Kepler Frequency of the orbit ν spin Constant, is the spin Frequency of the star Alpar, M., Shaham, J., 1985, Nature r ~ 1/M dot, ν HBO ~ M dot Beat Model for KHz QPO ν 2 = ν kepler ν 1 = ν kepler - ν spin ∆ν = ν 2 - ν 1 = ν spin Miller, Lamb, Psaltis 1998; Strohmayer et al 1996 Lamb & Miller 2003 …Constant What modulate X-ray Flux ? Why quasi periodic, not periodic ? Parameters: M/R/Spin, B?--Z/Atoll
39
X- 射线源准周期振荡 QPO, Beat ? 间隔常数? NO ! 拍模型预言 : 间隔常数 = 自旋 Alpar 和 Shaham , 1985 , Nature 。 Lamb et al 1985 , Nature 。 Miller et al 1998 , ApJ 。 SAXJ 1808, Wijnands, Nat, 2003 XTEJ 1807, Zhang, F, Qu JL, Zhang CM, Li TP, Chen, W., 2006
40
Einstein’s Prediction: Perihelion Motion of Orbit Perihelion precession of Mercury orbit = 43” /century, near NS, ~10^16 times large
41
Neutron Star Orbit N. Copernicus Einstein’s General Relativity: Perihelion precession Precession Model for KHz QPO, Stella and Vietri, 1999 ν 2 = ν kepler ν 1 = ν precession = ν 2 [1 – (1 – 3Rs/r) 1/2 ] ∆ν = ν 2 - ν 1 is not constant ISCO Saturation
42
Theoretical model Stella and Vietrie, 1999, Precession model Problems: 1.Vacuum 2.Circular orbit 3.Test particle 4.Predicted 2 M ⊙ 5. 30 sources, NS mass ~ 1.4 solar mass
43
Lense-Thirring Precession From Einstein GR, frame dragging was first quantitatively stated by W. Lense and H. Thirring in 1918, which is also referred to as the Lense-Thirring effect Zhang, SN et al 1997; Cui et al 1998: BH precession ? L.Stella, M.Vietri, 1998 Gravity Probe B, Gyroscope experiment, Stanford U, led by F.Everit, 2003 Gravitomagnetism Conf., 2 nd Fairbank W., Rome U, organized by R.Ruffini, 1998 Book “Gravitation and Inertia” by Ciufolini and Wheeler, 1995
44
Problems ? Vacuum ? Kerr rotation ? Magnetic Field ? Inner Accretion Disk ? Similarity: common parameter: accretion rate/radius
45
Alfven wave oscillation MODEL (in Schwarzschild spacetime): Zhang 2004; Li & Zhang 2005 Keplerian Orbital frequency resonance MHD Alfven wave Oscillation in the orbit ν 2 = 1850 (Hz) A X 3/2 ν 1 = ν 2 X (1- (1-X) 1/2 ) 1/2 A=m 1/2 /R 6 3/2; X=R/r, m: Ns mass in solar mass R 6 is NS radius in 10^6 cm
46
NS Mass in solar mass N S radius (km) Constrain on Star EOS, mass & radius CN1/CN2: normal neutron matter, CS1/CS2: Strange matter CPC: core becomes Bose-Einstein condensate of pions Kerr spacetime ?
47
10 年 RXTE 探测总结 观测,进展较大, QPO 关系明确 理论,进展缓慢,很多模型 ? 强引力广义相对论验证中子星结构检验核物理 开普勒运动 近星点进动 LT 进动 / 引力磁 引力红移 黑洞 /Kerr 时空 引力波 光线弯曲 质量 半径 核物态 (中子 / 夸克) 磁场 旋转 吸积流动 QPO 机制? 数据处理? 新物理? 物理实验室
48
References: 1: Remillard, R. A. et al. 1999, ApJ, 522, 397 2: Strohmayer, T. E. 2001, ApJ, 552, L49 3: Remillard, R. A. et al. 1999, ApJ, 517, L127 4: Remillard, R. A. et al. 2002, ApJ, 580, 1030 5: Miller, J. M. et al. 2001, ApJ, 563, 928 6: Strohmayer, T. E. 2001, ApJ, 554, L169 7: Remillard, R. A. 2003, abstract HEAD,7,3003 8: Remillard, R. A. 2002 (astro-ph/0208402) 9: Belloni, T. et al. 2006 (astro-ph/0603210) 10: Homan, J. et al. 2005, ApJ, 623, 383 11: Remillard, R. A. et al. 2006, ApJ, 637, 1002 12: Markwardt, C. 2001, ApSSS, 276,209 13: Klein-Wolt, M. et al. 2004, NuPhS, 132, 381 14: Homan, J. et al. 2003, ApJ, 586, 1262
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.