Download presentation
Presentation is loading. Please wait.
Published byWinifred Nash Modified over 9 years ago
1
Nu Xu1/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 QCD in the Twenty-First Century (1)Higgs (-like) Particle – - Origin of Mass, QCD dof - Standard Model The Theory (2) QCD Emerging Properties – - Confinement, χ C symmetry - QCD Phase Structure - Nucleon helicity structure - … - Non-linear QCD at small-x - …
2
Nu Xu2/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 High-Energy Nuclear Collisions and QCD Phase Structure Nu Xu (1,2) (1) College of Physical Science & Technology, Central China Normal University, Wuhan, 430079, China (2) Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3
Nu Xu3/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 2 T E RHIC, SPS, FAIR 3 3 Phase boundary RHIC, FAIR, NICA Exploring the QCD Phase Structure 1 1 T ini, T C LHC, RHIC 2 Partonic Matter Hadronic Matter
4
Nu Xu4/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 QCD Thermodynamics SB Ideal Gas RHICLHC 1)At μ B = 0: cross over transition, 150 < T c < 200 MeV 2)The SB ideal gas limit: T/T c ~ 10 7 3)T ini (LHC) ~ 2-3*T ini (RHIC) 4)Thermodynamic evolutions are similar for RHIC and LHC Zoltan Fodor, Lattice 2007
5
Nu Xu5/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 Jets at SPS, RHIC and LHC 1)Stronger suppression at higher collision energies 2)R AA ~ 0.5 for charged hadrons at high p T (~100 GeV/c) in central Pb+Pb central collisions Nuclear modification factor:
6
Nu Xu6/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 Medium Effects: Quarkonia key words: thermometer, deconfinement, Debye screen, regeneration (coalescence)
7
Nu Xu7/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 J/ψ Suppression or Enhancement mid-rapidity forward-rapidity 1)Due to large charm production cross section at LHC and coalescence process, the J/ψ R AA increased in mid-rapidity at central collisions. More such increase is expected in √s NN = 5.5 TeV Pb+Pb collisions. 2)Both suppression: “Debye Screening” and the recent observed increase: “Coalescence”, demonstrating the sQGP medium effect.
8
Model Comparisons mid-rapidity forward-rapidity 1)Models predict yield R AA well. 2)To indentify the production mechanism and study the properties of the medium: shadowing, collectivity, coalescence, etc, study: More see Pengfei’s talk.
9
Upsilon Productions 1)Temperature measurement? 2)Systematic study transverse momentum dependence of quarkonia productions in high-energy nuclear collisions:
10
Nu Xu10/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 Medium Effects: Collectivity key words: partonic collectivity, thermalization, perfect liquid
11
1)Collectivity increase as collision energy 2) √s NN > 39 GeV, partonic dominant √s NN ≤ 11 GeV, hadronic dominant STAR data: arXiv:1206.5528 ALICE data: Phys. Rev. Lett. 105, 252302 (2010) Collectivity vs. Collision Energy
12
Nu Xu12/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 Collectivity ~ Collision Energy ALICE: PRL105, 252302(10); arXiv:1208.1974 STAR: PRC66, 034904(02); PRC72, 014904(05); PHENIX: PRL98, 162301(07); PHOBOS: PRL98, 242302 (07) CERES: NPA698, 253c(02); E877: NPA638, 3c(98); E895: PRL83, 1295(99). STAR Preliminary
13
Nu Xu13/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 Di-electrons: √s NN Dependence 1)Di-lepton: penetrating-bulk probe 2)LMR: no significant energy dependence in enhancement 3)Future: focus in 1 < m ll < 3 GeV/c 2, to - Measure correlated charm contributions - Extract direct radiation information
14
Nu Xu14/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 Light hadron collectivity: partonic + hadronic Light hadron collectivity: partonic + hadronic (s, c) hadron collectivity: partonic! (s, c) hadron collectivity: partonic! Di-leptons (m > 1 GeV) collectivity: 1) partonic 2) direct radiation Di-leptons (m > 1 GeV) collectivity: 1) partonic 2) direct radiation √s NN = 200 GeV Au + Au Collisions Future: Partonic Collectivity, Direct Radiation
15
Nu Xu15/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 sQGP and QCD Phase Structure sQGP formed at μ B ~ 0: - Collectivity: NCQ scaling in v 2, … - Jet-quenching, Quarkonia, γ, … RHIC BES-I Program: - Partonic dominant: √s NN > 39 GeV (μ B ≤ 100 MeV) - Hadronic dominant: √s NN ≤ 11.5 GeV (μ B ≥ 300 MeV) What is the structure of the QCD phase diagram? - phase boundary? - QCD critical point? Observations: (1) Azimuthally HBT 1st order phase transition (2) Directed flow v 1 1st order phase transition (3) Dynamical correlations partonic vs. hadronic dof (4) v 2 - NCQ scaling partonic vs. hadronic dof (5) Fluctuations Critical point, correl. length - http://drupal.star.bnl.gov/STAR/starnotes /public/sn0493 - arXiv:1007.2613
16
Nu Xu16/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 Medium Effects: Critical Point key words: QGP phase, hadronic phase, 1 st order phase boundary, critical end point, correlation length, critical slowing down...
17
Nu Xu17/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 Higher Moments 1) High moments for conserved quantum numbers: Q, S, B, in high-energy nuclear collisions 2)Sensitive to critical point (ξ correlation length): 3)Direct comparison with Lattice results: 4)Extract susceptibilities and freeze-out temperature. An independent/important test on thermal equilibrium in heavy ion collisions. - A. Bazavov et al. 1208.1220 (NLOTE) - STAR Experiment: PRL105, 22303(2010) - M. Stephanov: PRL102, 032301(2009) - R.V. Gavai and S. Gupta, PLB696, 459(2011) - S. Gupta, et al., Science, 332, 1525(2011) - F. Karsch et al, PLB695, 136(2011) - M.Cheng et al, PRD79, 074505(2009) - Y. Hatta, et al, PRL91, 102003(2003) M. Cheng et al, PRD79, 074505(2009) R. Gavai and S. Gupta, QM2012
18
Nu Xu18/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 Higher Moment: Net-charge STAR Preliminary - PHENIX: E. O’Brien, QM2012 - STAR: D. McDonald, QM2012 - HRG Model: K. Redlich et al, private communications, 2011
19
Nu Xu19/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 STAR net-proton results: 1)All data show deviations below Poisson beyond statistical and systematic errors in the 0-5% most central collisions for κσ 2 and Sσ at all energies. 2)UrQMD model show monotonic behavior 3)Higher statistics needed for collisions at √s NN < 20 GeV Net-proton Higher Moments STAR Preliminary STAR: X.F. Luo, QM2012
20
Nu Xu20/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 Summary and Outlook 1) Heavy flavor: (a) NMF for HF jets and hadrons extract transport properties and understand energy loss mechanism (b) Collectivity of HF hadrons thermalization of the medium 2) Di-lepton: p T, v 2, R AA, polarization temperature and collectivity of the partonic medium 3) RHIC BES-II/NICA/FAIR at √s NN < 20 GeV exploring QCD phase diagram, search for the possible critical point, quarkyonic matter 4) small-x (forward-y) physics exploring the structure of cold nuclear matter, dynamical evolution from the CNM to sQGP LHC/RHIC provides unique opportunities for exploring matter with QCD degrees of freedom!
21
Nu Xu21/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012 2 T E RHIC, SPS 3 3 Large μ B NICA, FAIR, CSR 研究 量子色动力学 (QCD) 相结构 1 1 T ini, T C LHC, RHIC 2 Partonic Matter Hadronic Matter LHC+RHIC sQGP properties √s NN ~ few TeV LHC+RHIC sQGP properties √s NN ~ few TeV RHIC BES-II QCD phase structure and critical point √s NN ≤ 20 GeV RHIC BES-II QCD phase structure and critical point √s NN ≤ 20 GeV NICA/FAIR QCD phase structure √s NN ≤ 12 GeV NICA/FAIR QCD phase structure √s NN ≤ 12 GeV Future eRHIC Cold nuclear matter properties e + ion collisions Future eRHIC Cold nuclear matter properties e + ion collisions Emergent properties of QCD matter
22
Nu Xu22/20 ”ATHIC2012“, Pusan, Korea, November 14 - 17, 2012
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.