Download presentation
Presentation is loading. Please wait.
Published byTeresa Wood Modified over 9 years ago
1
Phototrophy –Conversion of radiant energy from the sun into ATP and NADPH Autotrophy involves carbon fixation –Conversion of inorganic carbon into organic molecules
2
Photoautotrophy –Involves light rx (energy step) and dark rx (carbon fixing step) –Photophosphorylation (light rx) provides ATP and reducing power (NADPH) to power the Calvin-Benson Cycle (dark rx)
3
3 types of phototrophy –Oxygenic phototrophy –Anoxygenic phototrophy –Rhodopsin based phototrophy
4
Pathways of oxygenic light reaction –Pair of chlorophyll based photosystems embedded in membrane Chloroplast or plasma membrane
5
Cyclic photophosphorylation produces only ATP Non-cyclic photophosphorylation produces ATP, NADPH and O2
7
Pathways of anoxygenic light reaction –Single bacteriochlorophyll based photosystem –Limited to cyclic photophosphorylation –Use different methods to generate reducing power –Molecules other than water are used as electron donor –O 2 is not produced
9
Archaea have no chlorophyll based photosystems They utilize a membrane protein called bacteriorhodopsin to capture radiant energy In oxygen poor environments the pigment functions as a light-driven proton pump
10
Dark rx uses ATP and NADPH to fix carbon
11
Chemolithotrophy Inorganic compounds serve as electron donors and energy source Common electron donors include –H, reduced N, S or Fe Photolithrotrophs require additional energy from sun –Purple bacteria
13
Low energy yield so they consume high quantities of inorganic molecules –Significant ecological impact Iron bacteria –oxidize ferrous iron (Fe 2 +) into ferric iron (Fe 3 +) –Ferrobacillus ferrooxidans
14
Nitrifying bacteria –oxidize ammonia (NH 3 ) to nitrate (NO 3 ) –Nitrosomonas and Nitrobacter Hydrogen bacteria –oxidize hydrogen gas (H 2 ) to water (H 2 O) –Alcoligenes eutrophus
15
Sulfur Oxidizing Bacteria –oxidize sulfides, sulfur and thiosulfate to sulfuric acid (H 2 SO 4 ) –Thiobacillus thiooxidans Many chemolithotrophs are autotrophic using CO 2 as carbon source –Use reverse electron flow to reduce NAD
16
Reverse electron flow is necessary for chemolithoautotrophs to generate reducing power NADH reduction by sulfide and nitrite
17
Chemolithoautotrophy is very inefficient –much of the energy is expended on generating reducing power rather than ATP –Many will grow as heterotrophs if supplied with organic carbon sources Many can grow either aerobically or anaerobically by varying the final electron acceptor
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.