Presentation is loading. Please wait.

Presentation is loading. Please wait.

Identifying Conic Sections

Similar presentations


Presentation on theme: "Identifying Conic Sections"— Presentation transcript:

1 Identifying Conic Sections
10-6 Identifying Conic Sections Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2

2 Solve by completing the square.
Warm Up Solve by completing the square. 1. x2 + 6x = 91 2. 2x2 + 8x – 90 = 0

3 Objectives Identify and transform conic functions.
Use the method of completing the square to identify and graph conic sections.

4 In Lesson 10-2 through 10-5, you learned about the four conic sections
In Lesson 10-2 through 10-5, you learned about the four conic sections. Recall the equations of conic sections in standard form. In these forms, the characteristics of the conic sections can be identified.

5

6 Example 1: Identifying Conic Sections in Standard Form
Identify the conic section that each equation represents. x + 4 = (y – 2)2 10 A. This equation is of the same form as a parabola with a horizontal axis of symmetry. B. This equation is of the same form as a hyperbola with a horizontal transverse axis.

7 Example 1: Identifying Conic Sections in Standard Form
Identify the conic section that each equation represents. C. This equation is of the same form as a circle.

8 Identify the conic section that each equation represents.
Check It Out! Example 1 Identify the conic section that each equation represents. a. x2 + (y + 14)2 = 112 – = 1 (y – 6)2 22 (x – 1)2 212 b.

9 All conic sections can be written in the general form Ax2 + Bxy + Cy2 + Dx + Ey+ F = 0. The conic section represented by an equation in general form can be determined by the coefficients.

10 Example 2A: Identifying Conic Sections in General Form
Identify the conic section that the equation represents. 4x2 – 10xy + 5y2 + 12x + 20y = 0 A = 4, B = –10, C = 5 Identify the values for A, B, and C. B2 – 4AC (–10)2 – 4(4)(5) Substitute into B2 – 4AC. 20 Simplify. Because B2 – 4AC > 0, the equation represents a hyperbola.

11 Example 2B: Identifying Conic Sections in General Form
Identify the conic section that the equation represents. 9x2 – 12xy + 4y2 + 6x – 8y = 0. A = 9, B = –12, C = 4 Identify the values for A, B, and C. B2 – 4AC (–12)2 – 4(9)(4) Substitute into B2 – 4AC. Simplify. Because B2 – 4AC = 0, the equation represents a parabola.

12 Example 2C: Identifying Conic Sections in General Form
Identify the conic section that the equation represents. 8x2 – 15xy + 6y2 + x – 8y + 12 = 0 A = 8, B = –15, C = 6 Identify the values for A, B, and C. B2 – 4AC (–15)2 – 4(8)(6) Substitute into B2 – 4AC. 33 Simplify. Because B2 – 4AC > 0, the equation represents a hyperbola.

13 Check It Out! Example 2a Identify the conic section that the equation represents. 9x2 + 9y2 – 18x – 12y – 50 = 0

14 Check It Out! Example 2b Identify the conic section that the equation represents. 12x2 + 24xy + 12y2 + 25y = 0

15 If you are given the equation of a conic in standard form, you can write the equation in general form by expanding the binomials. If you are given the general form of a conic section, you can use the method of completing the square from Lesson 5-4 to write the equation in standard form. You must factor out the leading coefficient of x2 and y2 before completing the square. Remember!

16 Rearrange to prepare for completing the square in x and y.
Example 3A: Finding the Standard Form of the Equation for a Conic Section Find the standard form of the equation by completing the square. Then identify and graph each conic. x2 + y2 + 8x – 10y – 8 = 0 Rearrange to prepare for completing the square in x and y. x2 + 8x y2 – 10y = Complete both squares. 2

17 Example 3A Continued (x + 4)2 + (y – 5)2 = 49 Factor and simplify. Because the conic is of the form (x – h)2 + (y – k)2 = r2, it is a circle with center (–4, 5) and radius 7.

18 Example 3B: Finding the Standard Form of the Equation for a Conic Section
Find the standard form of the equation by completing the square. Then identify and graph each conic. 5x2 + 20y2 + 30x + 40y – 15 = 0 Rearrange to prepare for completing the square in x and y. 5x2 + 30x y y = Factor 5 from the x terms, and factor 20 from the y terms. 5(x2 + 6x + )+ 20(y2 + 2y ) =

19 ( ) x + 3 2 y +1 2 + = 1 16 4 Example 3B Continued
Complete both squares. 6 5 x2 + 6x y2 + 2y = 2 ö é ÷ ø ê ë ù ú û æ ç è 5(x + 3)2 + 20(y + 1)2 = 80 Factor and simplify. ( ) 1 x y +1 2 = Divide both sides by 80.

20 Because the conic is of the form
Example 3B Continued Because the conic is of the form (x – h)2 a2 = 1, (y – k)2 b2 it is an ellipse with center (–3, –1), horizontal major axis length 8, and minor axis length 4. The co-vertices are (–3, –3) and (–3, 1), and the vertices are (–7, –1) and (1, –1).

21 Check It Out! Example 3a Find the standard form of the equation by completing the square. Then identify and graph each conic. y2 – 9x + 16y + 64 = 0

22 Check It Out! Example 3a Continued

23 Check It Out! Example 3b Find the standard form of the equation by completing the square. Then identify and graph each conic. 16x2 + 9y2 – 128x + 108y = 0

24 Check It Out! Example 3b Continued


Download ppt "Identifying Conic Sections"

Similar presentations


Ads by Google