Download presentation
Presentation is loading. Please wait.
Published byAntonio O'Donnell Modified over 11 years ago
1
Multivariate Description
2
What Technique? Response variable(s)... Predictors(s) No Predictors(s) Yes... is one distribution summary regression models... are many indirect gradient analysis (PCA, CA, DCA, MDS) cluster analysis direct gradient analysis constrained cluster analysis discriminant analysis (CVA)
3
a) Rotate the Variable Space
4
Raw Data
5
Linear Regression
6
Two Regressions
7
Principal Components
8
Gulls Variables
9
Scree Plot
10
Output > gulls.pca2$loadings Loadings: Comp.1 Comp.2 Comp.3 Comp.4 Weight -0.505 -0.343 0.285 0.739 Wing -0.490 0.852 -0.143 0.116 Bill -0.500 -0.381 -0.742 -0.232 H.and.B -0.505 -0.107 0.589 -0.622 > summary(gulls.pca2) Importance of components: Comp.1 Comp.2 Comp.3 Standard deviation 1.8133342 0.52544623 0.47501980 Proportion of Variance 0.8243224 0.06921464 0.05656722 Cumulative Proportion 0.8243224 0.89353703 0.95010425
11
Bi-Plot
12
Male or Female?
13
Linear Discriminant > gulls.lda <- lda(Sex ~ Wing + Weight + H.and.B + Bill, gulls) lda(Sex ~ Wing + Weight + H.and.B + Bill, data = gulls) Prior probabilities of groups: 0 1 0.5801105 0.4198895 Group means: Wing Weight H.and.B Bill 0 410.0381 871.7619 115.1143 17.62524 1 430.6118 1054.3092 125.9474 19.50789 Coefficients of linear discriminants: LD1 Wing 0.045512619 Weight 0.001887236 H.and.B 0.138127194 Bill 0.444847743
14
Discriminating
15
Relationship between PCA and LDA
16
CVA
18
b) Use Distance or Dissimilarity (Multi-Dimensional Scaling)
19
A Distance Matrix
20
Uses of Distances Distance/Dissimilarity can be used to:- Explore dimensionality in data (using PCO) As a basis for clustering/classification
21
UK Wet Deposition Network
22
Fitting Environmental Variables
23
A Map based on Measured Variables
24
Fitting Environmental Variables
25
c) Summarise by Weighted Averages
26
Species and Sites as Weighted Averages of each other SITES 1 1 1111 1 2111 SPP. 23466185750198304927 Bel per 3.2....2..2..22..... Jun buf.3..........4..…42.. Jun art...3..4..3..4..4.... Air pra........2........3.. Ele pal...8..4..5.....44... Rum ace....6..5....2..…23.. Vic lat..........12.1...... Bra rut..246.22.4242624.342 Ran fla.2.2..2..2.....42... Hyp rad........2..2.....5.. Leo aut 522.3.33223525222623 Pot pal.........2......2... Poa pra 424.34421.44435.…4.. Cal cus...3...........34... Tri pra....5..2........…2.. Tri rep 521.5.22.163322.6232 Ant odo....3..44.4......4.2 Sal rep.............3.5.3.. Ach mil 3...21.22.4.....…2.. Poa tri 79524246..4.5.6…45.. Ely rep 4.4..4.4....6.4..... Sag pro.25...2....22....34. Pla lan....5..52.33.3..…5.. Agr sto.587..4..4..3.454.4. Lol per 5.5.6742..67226.…6.. Alo gen 2524..5.....3.7...8. Bro hor 4.3....2..4.....…2..
27
Species and Sites as Weighted Averages of each other
28
Reciprocal Averaging - unimodal Site A B C D E F Species Prunus serotina 6 3 4 6 5 1 Tilia americana 2 0 7 0 6 6 Acer saccharum 0 0 8 0 4 9 Quercus velutina 0 8 0 8 0 0 Juglans nigra 3 2 3 0 6 0
29
Reciprocal Averaging - unimodal Site A B C D E F Species Score Species Iteration 1 Prunus serotina 6 3 4 6 5 1 1.00 Tilia americana 2 0 7 0 6 6 0.63 Acer saccharum 0 0 8 0 4 9 0.63 Quercus velutina 0 8 0 8 0 0 0.18 Juglans nigra 3 2 3 0 6 0 0.00 Iteration 1 1.00 0.00 0.86 0.60 0.62 0.99 Site Score
30
Reciprocal Averaging - unimodal Site A B C D E F Species Score Species Iteration 1 2 Prunus serotina 6 3 4 6 5 1 1.00 0.68 Tilia americana 2 0 7 0 6 6 0.63 0.84 Acer saccharum 0 0 8 0 4 9 0.63 0.87 Quercus velutina 0 8 0 8 0 0 0.18 0.30 Juglans nigra 3 2 3 0 6 0 0.00 0.67 Iteration 1 1.00 0.00 0.86 0.60 0.62 0.99 Site 2 0.65 0.00 0.88 0.05 0.78 1.00 Score
31
Reciprocal Averaging - unimodal Site A B C D E F Species Score Species Iteration 1 2 3 Prunus serotina 6 3 4 6 5 1 1.00 0.68 0.50 Tilia americana 2 0 7 0 6 6 0.63 0.84 0.86 Acer saccharum 0 0 8 0 4 9 0.63 0.87 0.91 Quercus velutina 0 8 0 8 0 0 0.18 0.30 0.02 Juglans nigra 3 2 3 0 6 0 0.00 0.67 0.66 Iteration 1 1.00 0.00 0.86 0.60 0.62 0.99 Site 2 0.65 0.00 0.88 0.05 0.78 1.00 Score 3 0.60 0.01 0.87 0.00 0.78 1.00
32
Reciprocal Averaging - unimodal Site A B C D E F Species Score Species Iteration 1 2 3 9 Prunus serotina 6 3 4 6 5 1 1.00 0.68 0.50 0.48 Tilia americana 2 0 7 0 6 6 0.63 0.84 0.86 0.85 Acer saccharum 0 0 8 0 4 9 0.63 0.87 0.91 0.91 Quercus velutina 0 8 0 8 0 0 0.18 0.30 0.02 0.00 Juglans nigra 3 2 3 0 6 0 0.00 0.67 0.66 0.65 Iteration 1 1.00 0.00 0.86 0.60 0.62 0.99 Site 2 0.65 0.00 0.88 0.05 0.78 1.00 Score 3 0.60 0.01 0.87 0.00 0.78 1.00 9 0.59 0.01 0.87 0.00 0.78 1.00
33
Reordered Sites and Species Site A C E B D F Species Species Score Quercus velutina 8 8 0 0 0 0 0.004 Prunus serotina 6 3 6 5 4 1 0.477 Juglans nigra 0 2 3 6 3 0 0.647 Tilia americana 0 0 2 6 7 6 0.845 Acer saccharum 0 0 0 4 8 9 0.909 Site Score 0.000 0.008 0.589 0.778 0.872 1.000
34
Managing Dimensionality (but not acronyms) PCA, CA, RDA, CCA, MDS, NMDS, DCA, DCCA, pRDA, pCCA
35
Type of Data Matrix species sites attributes species attributes sites attributes individuals desert macroph inverts uses watervar rain gulls
36
Ordination Techniques Linear methodsWeighted averaging unconstrainedPrincipal Components Analysis (PCA) Correspondence Analysis (CA) constrainedRedundancy Analysis (RDA) Canonical Correspondence Analysis (CCA)
37
Models of Species Response There are (at least) two models:- Linear - species increase or decrease along the environmental gradient Unimodal - species rise to a peak somewhere along the environmental gradient and then fall again
38
A Theoretical Model
39
Linear
40
Unimodal
41
Alpha and Beta Diversity alpha diversity is the diversity of a community (either measured in terms of a diversity index or species richness) beta diversity (also known as species turnover or differentiation diversity) is the rate of change in species composition from one community to another along gradients; gamma diversity is the diversity of a region or a landscape.
42
A Short Coenocline
43
A Long Coenocline
44
Inferring Gradients from Species (or Attribute) Data
45
Indirect Gradient Analysis Environmental gradients are inferred from species data alone Three methods: –Principal Component Analysis - linear model –Correspondence Analysis - unimodal model –Detrended CA - modified unimodal model
46
PCA - linear model
48
Terschelling Dune Data
49
PCA gradient - site plot
50
PCA gradient - site/species biplot standard nature biodynamic & hobby
51
Arches - Artifact or Feature?
52
The Arch Effect What is it? Why does it happen? What should we do about it?
53
From Alexandria to Suez
54
CA - with arch effect (sites)
55
CA - with arch effect (species)
56
Long Gradients ABCD
57
Gradient End Compression
58
CA - with arch effect (species)
59
CA - with arch effect (sites)
60
Detrending by Segments
61
DCA - modified unimodal
62
Making Effective Use of Environmental Variables
63
Approaches Use single responses in linear models of environmental variables Use axes of a multivariate dimension reduction technique as responses in linear models of environmental variables Constrain the multivariate dimension reduction into the factor space defined by the environmental variables
64
Unconstrained/Constrained Unconstrained ordination axes correspond to the directions of the greatest variability within the data set. Constrained ordination axes correspond to the directions of the greatest variability of the data set that can be explained by the environmental variables.
65
Direct Gradient Analysis Environmental gradients are constructed from the relationship between species environmental variables Three methods: –Redundancy Analysis - linear model –Canonical (or Constrained) Correspondence Analysis - unimodal model –Detrended CCA - modified unimodal model
66
Direct Gradient Analysis Basic PCA y ik = b 0k + b 1k x i + e ik –x i - the sample scores on the ordination axis –b 1k - the regression coefficients for each species (the species scores on the ordination axis) In RDA there is a further constraint on x i x i = c 1 z i1 + c 2 z i2 Making y ik = b 0k + b 1k c 1 z i1 + b 1k c 2 z i2 + e ik
67
Direct Gradient Analysis cca(species_data ~ e1 + e2 +... + en + Condition(e5), data=environmental_data) cca(varespec ~ Al + P*(K + Baresoil) + Condition(pH), data=varechem)
68
Lake Nasser - Egypt
69
CCA - site/species joint plot
70
CCA - species/environment biplot
71
Removing the Effect of Nuisance Variables
72
Partial Analyses Remove the effect of covariates –variables that we can measure but which are of no interest –e.g. block effects, start values, etc. Carry out the gradient analysis on what is left of the variation after removing the effect of the covariates.
73
Cluster Analysis
74
Different types of data example Continuous data:height Categorical data ordered (nominal):growth rate very slow, slow, medium, fast, very fast not ordered:fruit colour yellow, green, purple, red, orange Binary data:fruit / no fruit
75
Similarity matrix We define a similarity between units – like the correlation between continuous variables. (also can be a dissimilarity or distance matrix) A similarity can be constructed as an average of the similarities between the units on each variable. (can use weighted average) This provides a way of combining different types of variables.
76
relevant for continuous variables: Euclidean city block or Manhattan Distance metrics A B A B (also many other variations)
77
Similarity coefficients for binary data simple matching count if both units 0 or both units 1 Jaccard count only if both units 1 (also many other variants) simple matching can be extended to categorical data 0,11,1 0,01,0 0,11,1 0,01,0
78
hierarchical divisive put everything together and split monothetic / polythetic agglomerative keep everything separate and join the most similar points (classical cluster analysis) non-hierarchical k-means clustering Clustering methods
79
Agglomerative hierarchical Single linkage or nearest neighbour finds the minimum spanning tree: shortest tree that connects all points chaining can be a problem
80
Agglomerative hierarchical Complete linkage or furthest neighbour compact clusters of approximately equal size. (makes compact groups even when none exist)
81
Agglomerative hierarchical Average linkage methods between single and complete linkage
82
Testing Significance in Ordination
83
Randomisation Tests
85
Randomisation Example Model: cca(formula = dune ~ Moisture + A1 + Management, data = dune.env) Df Chisq F N.Perm Pr(>F) Model 7 1.1392 2.0007 200 < 0.005 *** Residual 12 0.9761 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.