Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physics of fusion power Lecture 3: Lawson criterion / Approaches to fusion.

Similar presentations


Presentation on theme: "Physics of fusion power Lecture 3: Lawson criterion / Approaches to fusion."— Presentation transcript:

1 Physics of fusion power Lecture 3: Lawson criterion / Approaches to fusion

2 Ignition condition Ignition is defined as the state in which the energy produced by the fusion reactions is sufficient to heat the plasma.

3 n-T-tau is a measure of progress Over the years the n- T-tau product shows an exponential increase Current experiments are close to break- even The next step ITER is expected to operate well above break-even but still somewhat below ignition

4 Some landmarks in fusion energy Research Initial experiments using charged grids tofocus ion beams at point focus (30s). Early MCF devices: mirrors and Z-pinches. Tokamak invented in Russia in late 50s: T3 andT4 JET tokamak runs near break-even 1990s Other MCF concepts like stellarators also indevelopment. Recently, massive improvements in lasertechnology have allowed ICF to come close toignition: planned for last year but didn’thappen.

5 Alternative fusion concepts

6 Quasi-neutrality Using the Poisson equation And a Boltzmann relation for the densities One arrives at an equation for the potential Positive added charge Response of the plasma

7 Solution The solution of the Poisson equation is Potential in vacuum Shielding due to the charge screening Vacuum and plasma solutionThe length scale for shielding is the Debye length which depends on both Temperature as well as density. It is around 10 -5 m for a fusion plasma

8 Quasi-neutrality For length scales larger than the Debye length the charge separation is close to zero. One can use the approximation of quasi-neutrality Note that this does not mean that there is no electric field in the plasma Under the quasi-neutrality approximation the Poisson equation can no longer be used to calculate the electric field

9 Divergence free current Using the continuity of charge Where J is the current density One directly obtains that the current density must be divergence free

10 Also the displacement current must be neglected From the Maxwell equation Taking the divergence and using that the current is divergence free one obtains The displacement current must therefore be neglected, and the relevant equation is

11 Quasi-neutrality The charge density is defined to be equal to zero (but a finite electric field does exist) This equation replaces the Poisson equation. (we do not calculate the electric field from Poisson’s equation, which would give zero field) Additionally, the displacement current is neglected. Length scales of the phenomena are larger than the Debye length, time scales longer than the plasma frequency. The current is divergence free.


Download ppt "Physics of fusion power Lecture 3: Lawson criterion / Approaches to fusion."

Similar presentations


Ads by Google