Download presentation
Presentation is loading. Please wait.
Published byKayla Guthrie Modified over 11 years ago
1
Gradient Analysis Approach to Ordination
2
Models of Species Response to Gradients
3
Models of Species Response There are (at least) two models:- Linear - species increase or decrease along the environmental gradient Unimodal - species rise to a peak somewhere along the environmental gradient and then fall again
4
A Theoretical Model
5
Linear
6
Unimodal
7
Alpha and Beta Diversity alpha diversity is the diversity of a community (either measured in terms of a diversity index or species richness) beta diversity (also known as species turnover or differentiation diversity) is the rate of change in species composition from one community to another along gradients; gamma diversity is the diversity of a region or a landscape.
8
A Short Coenocline
9
A Long Coenocline
10
Inferring Gradients from Species (or Attribute) Data
11
Indirect Gradient Analysis Environmental gradients are inferred from species data alone Three methods: Principal Component Analysis - linear model Correspondence Analysis - unimodal model Detrended CA - modified unimodal model
12
PCA - linear model
14
Terschelling Dune Data
15
PCA gradient - site plot
16
PCA gradient - site/species biplot
17
Reciprocal Averaging Site A B C D E F Species Prunus serotina 6 3 4 6 5 1 Tilia americana 2 0 7 0 6 6 Acer saccharum 0 0 8 0 4 9 Quercus velutina 0 8 0 8 0 0 Juglans nigra 3 2 3 0 6 0
18
Reciprocal Averaging Site A B C D E F Species Score Species Iteration 1 Prunus serotina 6 3 4 6 5 1 1.00 Tilia americana 2 0 7 0 6 6 0.63 Acer saccharum 0 0 8 0 4 9 0.63 Quercus velutina 0 8 0 8 0 0 0.18 Juglans nigra 3 2 3 0 6 0 0.00 Iteration 1 1.00 0.00 0.86 0.60 0.62 0.99 Site Score
19
Reciprocal Averaging Site A B C D E F Species Score Species Iteration 1 2 Prunus serotina 6 3 4 6 5 1 1.00 0.68 Tilia americana 2 0 7 0 6 6 0.63 0.84 Acer saccharum 0 0 8 0 4 9 0.63 0.87 Quercus velutina 0 8 0 8 0 0 0.18 0.30 Juglans nigra 3 2 3 0 6 0 0.00 0.67 Iteration 1 1.00 0.00 0.86 0.60 0.62 0.99 Site 2 0.65 0.00 0.88 0.05 0.78 1.00 Score
20
Reciprocal Averaging Site A B C D E F Species Score Species Iteration 1 2 3 Prunus serotina 6 3 4 6 5 1 1.00 0.68 0.50 Tilia americana 2 0 7 0 6 6 0.63 0.84 0.86 Acer saccharum 0 0 8 0 4 9 0.63 0.87 0.91 Quercus velutina 0 8 0 8 0 0 0.18 0.30 0.02 Juglans nigra 3 2 3 0 6 0 0.00 0.67 0.66 Iteration 1 1.00 0.00 0.86 0.60 0.62 0.99 Site 2 0.65 0.00 0.88 0.05 0.78 1.00 Score 3 0.60 0.01 0.87 0.00 0.78 1.00
21
Reciprocal Averaging Site A B C D E F Species Score Species Iteration 1 2 3 9 Prunus serotina 6 3 4 6 5 1 1.00 0.68 0.50 0.48 Tilia americana 2 0 7 0 6 6 0.63 0.84 0.86 0.85 Acer saccharum 0 0 8 0 4 9 0.63 0.87 0.91 0.91 Quercus velutina 0 8 0 8 0 0 0.18 0.30 0.02 0.00 Juglans nigra 3 2 3 0 6 0 0.00 0.67 0.66 0.65 Iteration 1 1.00 0.00 0.86 0.60 0.62 0.99 Site 2 0.65 0.00 0.88 0.05 0.78 1.00 Score 3 0.60 0.01 0.87 0.00 0.78 1.00 9 0.59 0.01 0.87 0.00 0.78 1.00
22
Reordered Sites and Species Site A C E B D F Species Species Score Quercus velutina 8 8 0 0 0 0 0.004 Prunus serotina 6 3 6 5 4 1 0.477 Juglans nigra 0 2 3 6 3 0 0.647 Tilia americana 0 0 2 6 7 6 0.845 Acer saccharum 0 0 0 4 8 9 0.909 Site Score 0.000 0.008 0.589 0.778 0.872 1.000
23
Lake Nasser Invertebrates
25
CA - unimodal model + + + + + + + + + + Protozoa Rotifera Cladocera Copepoda Insecta Turbellaria Tardigrada Annelida Nematoda
26
Arches - Artifact or Feature?
27
The Arch Effect What is it? Why does it happen? What should we do about it?
28
From Alexandria to Suez
29
CA - with arch effect (species)
30
CA - with arch effect (sites)
31
Long Gradients ABCD
32
Gradient End Compression
33
CA - with arch effect (species)
34
Detrending by Segments
35
DCA - modified unimodal
36
Making Effective Use of Environmental Variables
37
Direct Gradient Analysis Environmental gradients are constructed from the relationship between species environmental variables Three methods: Redundancy Analysis - linear model Canonical (or Constrained) Correspondence Analysis - unimodal model Detrended CCA - modified unimodal model
38
CCA - site/species joint plot
39
CCA - species/environment biplot
40
Removing the Effect of Nuisance Variables
41
Partial Analyses Remove the effect of covariates variables that we can measure but which are of no interest e.g. block effects, start values, etc. Carry out the gradient analysis on what is left of the variation after removing the effect of the covariates.
42
Testing Significance in Ordination
43
Randomisation Tests
45
Randomisation Example Model: cca(formula = dune ~ Moisture + A1 + Management, data = dune.env) Df Chisq F N.Perm Pr(>F) Model 7 1.1392 2.0007 200 < 0.005 *** Residual 12 0.9761 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.