Download presentation
Presentation is loading. Please wait.
Published byEleanor Barber Modified over 9 years ago
1
M.R.Burleigh 2601/Unit 1 DEPARTMENT OF PHYSICS AND ASTRONOMY LIFECYCLES OF STARS Option 2601
2
M.R. Burleigh 2601/Unit 1 Books Introductory Astronomy and Astrophysics –Zeilik and Gregory Astrophysics I: stars –Bowers and Deeming The Physics of Stars –A.C. Phillips
3
M.R. Burleigh 2601/Unit 1 Stellar Lifecycle
4
M.R. Burleigh 2601/Unit 1 Starbirth
5
Young Stars
6
M.R. Burleigh 2601/Unit 1 Globular Clusters
7
M.R. Burleigh 2601/Unit 1 Star Death
8
M.R. Burleigh 2601/Unit 1 Star Death
9
M.R. Burleigh 2601/Unit 1 Star Death
10
M.R. Burleigh 2601/Unit 1 Star Death
11
M.R. Burleigh 2601/Unit 1 Aims and Objectives To introduce you to the underlying physics governing the properties of stars and their evolution
12
M.R. Burleigh 2601/Unit 1 Lifecycles of Stars Unit 1 - Observational properties of stars Unit 2 - Stellar Spectra Unit 3 - The Sun Unit 4 - Stellar Structure Unit 5 - Stellar Evolution Unit 6 - Stars of particular interest
13
M.R.Burleigh 2601/Unit 1 DEPARTMENT OF PHYSICS AND ASTRONOMY Unit 1 Observational Properties of Stars
14
M.R. Burleigh 2601/Unit 1 Observational Properties of Stars The electromagnetic spectrum Radiation Flux, intensity and luminosity Stellar magnitudes and photometry Temperatures masses and radii
15
M.R. Burleigh 2601/Unit 1 The Electromagnetic Spectrum
16
M.R. Burleigh 2601/Unit 1 Atmospheric absorption
17
M.R. Burleigh 2601/Unit 1 Wave nature: Wavelength Frequency The Nature of EM radiation Energy Planck’s constant
18
M.R. Burleigh 2601/Unit 1 Energy Conversions 1keV = 2.418 10 18 Hz 1keV = 11.60 10 6 K 1keV = 1.24Å 1keV = 1.6 10 -9 erg 1J = 10 7 erg
19
M.R. Burleigh 2601/Unit 1 Solid angle I r Normal Spherical surface aa AA Total energy flow from the surface of a star Monochromatic intensityStellar Absolute Luminosity Stellar distance
20
M.R. Burleigh 2601/Unit 1 Output per unit area of source per second over the whole spectrum: Stellar radius Brightness (apparent luminosity) is sometimes termed as ‘flux at the Earth’: Can also be considered as monochromatic luminosity or flux i.e. L( ), F( ) Surface flux of star (F): radiant energy Inverse square law Flux
21
M.R. Burleigh 2601/Unit 1 Inverse Square Law
22
M.R. Burleigh 2601/Unit 1 Magnitude System Comparison of stars wrt one another Introduced by Hipparchus ~120BC Catalogued >1000 naked eye stars in order of importance (brightness) 1 st magnitude = 1 st importance Extended by Ptolemy 180AD
23
M.R. Burleigh 2601/Unit 1 Magnitude System Modern scale dates from 1854, by Pogson Showed that brightness scale is logarithmic, 1 st mag ~100 x 6 th mag A step of 1 mag = 10 2/5 = 2.512 Can easily calculate differences
24
M.R. Burleigh 2601/Unit 1 Magnitude system Constant Apparent magnitude (m): Absolute magnitude (M): Distance modulus Parallax
25
M.R. Burleigh 2601/Unit 1 Stellar Magnitudes Any detector (i.e the eye) is only sensitive to a limited wavelength range Only sampling part of radiation from a star Photographic film centred on ~420nm (m pg ) Visual (eye) most sensitive ~550nm (m v )
26
M.R. Burleigh 2601/Unit 1 UBVRIJHKLMN 36544055070090012501.652.23.64.810.2 nm mm Johnson system: Magnitude Definitions
27
M.R. Burleigh 2601/Unit 1 (B – V) (also U – B etc.) B - V -vefor20,000K 0For10,000K (A0) e.g. Vega +vefor3,000K Colour Index
28
M.R. Burleigh 2601/Unit 1 BC = -0.07 for the Sun (T eff = 6,500K) Cannot observe m bol directly so use bolometric correction… Bolometric Magnitude
29
M.R. Burleigh 2601/Unit 1 Wien displacement law:c = 0.2898 cm deg Stephan-Boltzmann law: h is the Planck constant, k is Boltzmann’s constant Temperature Definitions Blackbody: Stefan’s constant Effective temperature T e Planck law:
30
M.R. Burleigh 2601/Unit 1
32
Magnitude system Constant Apparent magnitude (m): Absolute magnitude (M): Distance modulus Parallax
33
M.R. Burleigh 2601/Unit 1 Stellar Distances The “Parallax” method of measuring distance… For nearest stars only (<100pc)
34
M.R. Burleigh 2601/Unit 1 a = 1AU d (radians) = a / d 1pc = 206,265AU = 1 / d (pc) 1rad = 206,265 Stellar Distances
35
M.R. Burleigh 2601/Unit 1
36
Distances > 100pc Use Sun’s motion through the nearby stars Motions of relatively nearby star clusters
37
M.R. Burleigh 2601/Unit 1 Michelson stellar interferometer Angle in radians Stellar physical diameter Distance Interference pattern depends upon angle between wavefronts from opposite limbs of the star Measurement of Radii Occultations/eclipses in binary stars Occultations of stars by the Moon
38
M.R. Burleigh 2601/Unit 1 So What is a Star? Self-gravitating ball of gas radiating energy Energy produced by –Thermonuclear reactions –+ gravitational/stellar collapse Star must produce enough energy to maintain internal pressure to counter gravitational field
39
M.R. Burleigh 2601/Unit 1 Physical Principles Atomic physics radiation processes/spectral lines Thermodynamics behaviour of gas/stellar structure Nuclear physics energy generation/creation of heavy elements Atmospheres Interior
40
M.R. Burleigh 2601/Unit 1 Unit 1 Slides and Notes Can be found at… –www.star.le.ac.uk/~mbu/lectures.html In case of problems see me in lectures or email me… mbu@star.le.ac.uk
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.