Download presentation
Presentation is loading. Please wait.
Published byJoleen Dorsey Modified over 9 years ago
1
Profiling Tools In Ranger Carlos Rosales, Kent Milfeld and Yaakoub Y. El Kharma carlos@tacc.utexas.edu
2
SCALABILITY IN MPI APPLICATIONS mpiP and IPM
3
About mpiP mpiP is an MPI Profiling library mpip.sourceforge.netmpip.sourceforge.net Scalable & Lightweight Multiplatform – Linux IA32/IA64/x86_64/MPIS64 – IBM POWER 4/5 – Cray XT3/XT4/X1E Does not require manual code instrumentation – collects statistics of MPI functions (wraps original MPI function calls) – less overhead than tracing tools – less data than tracing tools Easy to use (requires linking but not compilation)
4
Using mpiP Load the mpiP module: % module load mpiP Link the static library before any others: % mpicc -g -L$TACC_MPIP_LIB -lmpiP -lbfd -liberty./srcFile.c Set environmental variables controlling the mpiP output: % setenv MPIP ‘-t 10 -k 2’ In this case: -t 10 only callsites with time > 10% MPI time included in report -k 2 set callsite stack traceback depth to 2 Run program through the queue as usual.
5
mpiP runtime options optiondescriptiondefault -cgenerate concise report no callsite process-specific detail -k nset callsite stack traceback depth to 1 -odisable profiling at initialization -t xset print threshold, is MPI % of time for each callsite0.0 -vgenerate both concise and verbose reports -x exespecify the full path to the executable (csh)% setenv MPIP ‘option1 option2 …’ (bash)% export MPIP=‘option1 option2 …’
6
mpiP calls from C/Fortran Generate arbitrary reports using the function call MPI_Pcontrol() with different arguments Useful to: – profile specific sections of the code – obtain individual profiles of multiple function calls ArgumentOutput behavior 0Disable profiling (default) 1Enable profiling 2Reset all callsite data 3Generate verbose report 4Generate concise report
7
MPI_Pcontrol examples Scope limitation switch(i) { case 5: MPI_Pcontrol(1);// enable profiling break; case 6: MPI_Pcontrol(0);// disable profiling break; default: break; } /*... do something for one timestep... */ Individual reports switch(i) { case 5: MPI_Pcontrol(2); // reset profile data MPI_Pcontrol(1); // enable profiling break; case 6: MPI_Pcontrol(3); // generate verbose report MPI_Pcontrol(4); // generate concise report MPI_Pcontrol(0); // disable profiling break; default: break; } /*... do something for one timestep... */
8
mpiP output After running the executable a file with the extension.mpiP will be generated with: – MPI Time (MPI time for all MPI calls) – MPI callsites – Aggregate message size – Aggregate time For scalability analysis it is important to compare the total MPI time to the total running time of the application. Detailed function call data can be used to identify communication hotspots.
9
mpiP output: MPI Time --------------------------------------------------------------------------- @--- MPI Time (seconds) --------------------------------------------------- --------------------------------------------------------------------------- Task AppTime MPITime MPI% 0 4.83 4.4 91.12 1 4.83 0.332 6.87 2 4.83 0.31 6.42 3 4.83 0.316 6.54 4 4.83 0.328 6.79 5 4.83 0.34 7.04 6 4.83 0.33 6.84 7 4.83 0.342 7.08 8 4.83 0.324 6.71 9 4.83 0.323 6.69 10 4.83 0.346 7.17 11 4.83 0.328 6.79 12 4.83 0.341 7.06 13 4.83 0.32 6.63 14 4.83 0.345 7.15 15 4.83 0.344 7.13 * 77.2 9.36 12.13
10
mpiP output: MPI Time --------------------------------------------------------------------------- @--- MPI Time (seconds) --------------------------------------------------- --------------------------------------------------------------------------- Task AppTime MPITime MPI% 0 4.83 4.4 91.12 1 4.83 0.332 6.87 2 4.83 0.31 6.42 3 4.83 0.316 6.54 4 4.83 0.328 6.79 5 4.83 0.34 7.04 6 4.83 0.33 6.84 7 4.83 0.342 7.08 8 4.83 0.324 6.71 9 4.83 0.323 6.69 10 4.83 0.346 7.17 11 4.83 0.328 6.79 12 4.83 0.341 7.06 13 4.83 0.32 6.63 14 4.83 0.345 7.15 15 4.83 0.344 7.13 * 77.2 9.36 12.13 This process seems to be controlling all MPI exchanges
11
mpiP output: MPI callsites ---------------------------------------------------------------------- @--- Callsites: 9 ---------------------------------------------------- ---------------------------------------------------------------------- ID Lev File/Address Line Parent_Funct MPI_Call 1 0 matmultc.c 60 main Send 2 0 matmultc.c 52 main Bcast 3 0 matmultc.c 103 main Barrier 4 0 matmultc.c 78 main Send 5 0 matmultc.c 65 main Recv 6 0 matmultc.c 74 main Send 7 0 matmultc.c 98 main Send 8 0 matmultc.c 92 main Recv 9 0 matmultc.c 88 main Bcast
12
mpiP output: Aggregate time ---------------------------------------------------------------------- @--- Aggregate Time (top twenty, descending, milliseconds) ----------- ---------------------------------------------------------------------- Call Site Time App% MPI% COV Recv 5 4.19e+03 5.42 44.70 0.00 Bcast 9 4.12e+03 5.34 44.03 0.00 Recv 8 412 0.53 4.40 0.11 Barrier 3 229 0.30 2.45 0.79 Send 7 203 0.26 2.17 0.44 Bcast 2 174 0.23 1.86 0.00 Send 6 37 0.05 0.39 0.00 Send 1 0.473 0.00 0.01 0.00 Send 4 0.023 0.00 0.00 0.00
13
mpiP output: Aggregate time ---------------------------------------------------------------------- @--- Aggregate Time (top twenty, descending, milliseconds) ----------- ---------------------------------------------------------------------- Call Site Time App% MPI% COV Recv 5 4.19e+03 5.42 44.70 0.00 Bcast 9 4.12e+03 5.34 44.03 0.00 Recv 8 412 0.53 4.40 0.11 Barrier 3 229 0.30 2.45 0.79 Send 7 203 0.26 2.17 0.44 Bcast 2 174 0.23 1.86 0.00 Send 6 37 0.05 0.39 0.00 Send 1 0.473 0.00 0.01 0.00 Send 4 0.023 0.00 0.00 0.00
14
mpiP output: Message Size ---------------------------------------------------------------------- @--- Aggregate Sent Message Size (top twenty, descending, bytes) ----- ---------------------------------------------------------------------- Call Site Count Total Avrg Sent% Bcast 9 30000 4.8e+08 1.6e+04 83.33 Send 7 2000 3.2e+07 1.6e+04 5.56 Bcast 2 2000 3.2e+07 1.6e+04 5.56 Send 6 1985 3.18e+07 1.6e+04 5.51 Send 1 15 2.4e+05 1.6e+04 0.04 Send 4 15 120 8 0.00
15
About IPM IPM is an Integrated Performance Monitoring tool http://ipm-hpc.sourceforge.net/ Portable profiling infrastructure for parallel codes Low-overhead performance summary of computing and communication IPM is a quick, easy and concise profiling tool Requires no manual instrumentation, just adding the -g option to the compilation Produces XML output that is parsed by scripts to generate browser- readable html pages The level of detail it reports is lower than TAU, PAPI, HPCToolkit or Scalasca but higher than mpiP
16
Using IPM Available on Ranger for both intel and pgi compilers, with mvapich and mvapich2 Create ipm environment with module command before running code: % module load ipm In your job script, set up the following ipm environment before the ibrun command: module load ipm export LD_PRELOAD=$TACC_IPM_LIB/libipm.so export IPM_REPORT=full ibrun
17
Using IPM export LD_PRELOAD=$TACC_IPM_LIB/libipm.so – must be inside job script to ensure the IPM wrappers for MPI calls are loaded properly IPM_REPORT: controls the level of information collected – full – terse – none IPM_MPI_THRESHOLD : Reports only routines using this percentage (or more) of MPI time. – e.g. “ IPM_MPI_THRESHOLD 0.3” report subroutines that consume more than 30% of the total MPI time. Important details: % module help ipm
18
Output from IPM When your code has finished running IPM will create an XML file with a name like: username.1231369287.321103.0 Get basic or full information in text mode using: % ipm_parse username.1231369287.321103.0 % ipm_parse -full username.1231369287.321103.0 You can also transform this XML file into standard HTML files : % ipm_parse -html username.1231369287.321103.0 This generates a directory which contains an index.html file readable by any web browser Tar this directory and scp the file to your own local computer to visualize the results
19
IPM: Text Output ##IPMv0.922############################################### # # command : /work/01125/yye00/ICAC/cactus_SandTank SandTank.par # host : i101-309/x86_64_Linux mpi_tasks : 32 on 2 nodes # start : 05/26/09/11:49:06 wallclock : 2.758892 sec # stop : 05/26/09/11:49:09 %comm : 2.01 # gbytes : 4.38747e+00 total gflop/sec : 9.39108e-02 total # ########################################################## # region : * [ntasks] = 32 # # [total] min max # entries 32 1 1 1 # wallclock 88.2742 2.75857 2.75816 2.75889 # user 5.51634 0.172386 0.148009 0.200012 # system 1.771 0.0553438 0.0536683 0.056717 # %comm 2.00602 1.94539 2.05615 # gflop/sec 0.0939108 0.00293471 0.00293338 0.002952 # gbytes 4.38747 0.137109 0.136581 0.144985 # # PAPI_FP_OPS 2.5909e+08 8.09655e+06 8.09289e+06 8.14685e+06 # PAPI_TOT_CYC 6.80291e+09 2.12591e+08 2.02236e+08 2.19109e+08 # PAPI_VEC_INS 5.95596e+08 1.86124e+07 1.85964e+07 1.8756e+07 # PAPI_TOT_INS 4.16377e+09 1.30118e+08 1.0987e+08 1.35676e+08 # # [time] [calls] # MPI_Allreduce 0.978938 53248 55.28 1.11 # MPI_Comm_rank 0.316355 6002 17.86 0.36 # MPI_Barrier 0.247135 3680 13.95 0.28 # MPI_Allgatherv 0.16621 2848 9.39 0.19 # MPI_Bcast 0.0217298 576 1.23 0.02 # MPI_Allgather 0.0216982 672 1.23 0.02 # MPI_Recv 0.0186796 32 1.05 0.02 # MPI_Comm_size 0.000139921 2112 0.01 0.00 # MPI_Send 0.000115622 32 0.01 0.00 ###########################################################
20
IPM: HTML Output
21
IPM: Load Balance
22
IPM: Communication balancing, by task
23
IPM: Integrated Performance Monitoring
24
IPM: Connectivity, Buffer-size Distribution
25
IPM: Buffer-Size Distribution
26
IPM: Memory Usage
27
BASIC PROFILING TOOLS timers, gprof
28
Timers: Command Line The command time is available in most Unix systems. It is simple to use (no code instrumentation required). Gives total execution time of a process and all its children in seconds. % /usr/bin/time -p./exeFile real 9.95 user 9.86 sys 0.06 Leave out the -p option to get additional information: % time./exeFile % 9.860u 0.060s 0:09.95 99.9%0+0k 0+0io 0pf+0w
29
Timers: Code Section INTEGER :: rate, start, stop REAL :: time CALL SYSTEM_CLOCK(COUNT_RATE = rate) CALL SYSTEM_CLOCK(COUNT = start) ! Code to time here CALL SYSTEM_CLOCK(COUNT = stop) time = REAL( ( stop - start )/ rate ) #include double start, stop, time; start = (double)clock()/CLOCKS_PER_SEC; /* Code to time here */ stop = (double)clock()/CLOCKS_PER_SEC; time = stop - start;
30
About GPROF GPROF is the GNU Project PROFiler. gnu.org/software/binutils/gnu.org/software/binutils/ Requires recompilation of the code. Compiler options and libraries provide wrappers for each routine call and periodic sampling of the program. A default gmon.out file is produced with the function call information. GPROF links the symbol list in the executable with the data in gmon.out.
31
Types of Profiles Flat Profile – CPU time spend in each function (self and cumulative) – Number of times a function is called – Useful to identify most expensive routines Call Graph – Number of times a function was called by other functions – Number of times a function called other functions – Useful to identify function relations – Suggests places where function calls could be eliminated Annotated Source – Indicates number of times a line was executed
32
Profiling with gprof Use the -pg flag during compilation: % gcc -g -pg./srcFile.c % icc -g -p./srcFile.c % pgcc -g -pg./srcFile.c Run the executable. An output file gmon.out will be generated with the profiling information. Execute gprof and redirect the output to a file: % gprof./exeFile gmon.out > profile.txt % gprof –l./exeFile gmon.out > profile_line.txt % gprof -A./exeFile gmon.out > profile_anotated.txt
33
Flat profile In the flat profile we can identify the most expensive parts of the code (in this case, the calls to matSqrt, matCube, and sysCube). % cumulative self self total time seconds seconds calls s/call s/call name 50.00 2.47 2.47 2 1.24 1.24 matSqrt 24.70 3.69 1.22 1 1.22 1.22 matCube 24.70 4.91 1.22 1 1.22 1.22 sysCube 0.61 4.94 0.03 1 0.03 4.94 main 0.00 4.94 0.00 2 0.00 0.00 vecSqrt 0.00 4.94 0.00 1 0.00 1.24 sysSqrt 0.00 4.94 0.00 1 0.00 0.00 vecCube
34
Call Graph Profile index % time self children called name 0.00 0.00 1/1 (8) [1] 100.0 0.03 4.91 1 main [1] 0.00 1.24 1/1 sysSqrt [3] 1.24 0.00 1/2 matSqrt [2] 1.22 0.00 1/1 sysCube [5] 1.22 0.00 1/1 matCube [4] 0.00 0.00 1/2 vecSqrt [6] 0.00 0.00 1/1 vecCube [7] ----------------------------------------------- 1.24 0.00 1/2 main [1] 1.24 0.00 1/2 sysSqrt [3] [2] 50.0 2.47 0.00 2 matSqrt [2] ----------------------------------------------- 0.00 1.24 1/1 main [1] [3] 25.0 0.00 1.24 1 sysSqrt [3] 1.24 0.00 1/2 matSqrt [2] 0.00 0.00 1/2 vecSqrt [6] -----------------------------------------------
35
Visual Call Graph main matSqrt vecSqrt matCube vecCube sysSqrt sysCube
36
Call Graph Profile index % time self children called name 0.00 0.00 1/1 (8) [1] 100.0 0.03 4.91 1 main [1] 0.00 1.24 1/1 sysSqrt [3] 1.24 0.00 1/2 matSqrt [2] 1.22 0.00 1/1 sysCube [5] 1.22 0.00 1/1 matCube [4] 0.00 0.00 1/2 vecSqrt [6] 0.00 0.00 1/1 vecCube [7] ----------------------------------------------- 1.24 0.00 1/2 main [1] 1.24 0.00 1/2 sysSqrt [3] [2] 50.0 2.47 0.00 2 matSqrt [2] ----------------------------------------------- 0.00 1.24 1/1 main [1] [3] 25.0 0.00 1.24 1 sysSqrt [3] 1.24 0.00 1/2 matSqrt [2] 0.00 0.00 1/2 vecSqrt [6] -----------------------------------------------
37
Visual Call Graph main matSqrt vecSqrt matCube vecCube sysSqrt sysCube
38
Call Graph Profile index % time self children called name 0.00 0.00 1/1 (8) [1] 100.0 0.03 4.91 1 main [1] 0.00 1.24 1/1 sysSqrt [3] 1.24 0.00 1/2 matSqrt [2] 1.22 0.00 1/1 sysCube [5] 1.22 0.00 1/1 matCube [4] 0.00 0.00 1/2 vecSqrt [6] 0.00 0.00 1/1 vecCube [7] ----------------------------------------------- 1.24 0.00 1/2 main [1] 1.24 0.00 1/2 sysSqrt [3] [2] 50.0 2.47 0.00 2 matSqrt [2] ----------------------------------------------- 0.00 1.24 1/1 main [1] [3] 25.0 0.00 1.24 1 sysSqrt [3] 1.24 0.00 1/2 matSqrt [2] 0.00 0.00 1/2 vecSqrt [6] -----------------------------------------------
39
Visual Call Graph main matSqrt vecSqrt matCube vecCube sysSqrt sysCube
40
ADVANCED PROFILING TOOLS PerfExpert, Tau
41
Advanced Profiling Tools Can be intimidating: – Difficult to install – Many dependences – Require kernel patches Useful for serial and parallel programs Extensive profiling and scalability information Analyze code using: – Timers – Hardware registers (PAPI) – Function wrappers Not your problem!!
42
PAPI PAPI is a Performance Application Programming Interface icl.cs.utk.edu/papi API to use hardware counters Behind Tau, HPCToolkit Multiplatform: – Most Intel & AMD chips – IBM POWER 4/5/6 – Cray X/XD/XT – Sun UltraSparc I/II/III – MIPS – SiCortex – Cell Available as a module in Ranger
43
PAPI: Available Events Counter/Event Name Meaning PAPI_L1_DCMLevel 1 data cache misses PAPI_L1_ICMLevel 1 instruction cache misses PAPI_L2_DCMLevel 2 data cache misses PAPI_L2_ICMLevel 2 instruction cache misses PAPI_L2_TCMLevel 2 cache misses PAPI_L3_TCMLevel 3 cache misses PAPI_FPU_IDLCycles floating point units are idle PAPI_TLB_DMData translation lookaside buffer misses PAPI_TLB_IM Instruction translation lookaside buffer misses PAPI_STL_ICYCycles with no instruction issue PAPI_HW_INTHardware interrupts PAPI_BR_TKNConditional branch instructions taken PAPI_BR_MSP Conditional branch instructions mispredicted PAPI_TOT_INSInstructions completed PAPI_FP_INSFloating point instructions PAPI_BR_INSBranch instructions Counter/Event Name Meaning PAPI_VEC_INSVector/SIMD instructions PAPI_RES_STLCycles stalled on any resource PAPI_TOT_CYCTotal cycles PAPI_L1_DCALevel 1 data cache accesses PAPI_L2_DCALevel 2 data cache accesses PAPI_L2_ICHLevel 2 instruction cache hits PAPI_L1_ICALevel 1 instruction cache accesses PAPI_L2_ICALevel 2 instruction cache accesses PAPI_L1_ICRLevel 1 instruction cache reads PAPI_L2_TCALevel 2 total cache accesses PAPI_L3_TCRLevel 3 total cache reads PAPI_FML_INSFloating point multiply instructions PAPI_FAD_INS Floating point add instructions (Also includes subtract instructions) PAPI_FDV_INS Floating point divide instructions (Counts both divide and square root instructions) PAPI_FSQ_INS Floating point square root instructions (Counts both divide and square root instructions) PAPI_FP_OPSFloating point operations
44
About PerfExpert Brand new tool, locally developed at UT Easy to use and understand Great for quick profiling and for beginners Provides recommendation on “what to fix” in a subroutine Collects information from PAPI using HPCToolkit No MPI specific profiling, no 3D visualization, no elaborate metrics Combines ease of use with useful interpretation of gathered performance data
45
Using PerfExpert Load the papi and java modules: % module load papi % module load java Copy the PerfExpert.sge submission script (for editing): cp /share/home/00976/burtsche/PerfExpert/PerfExpert.sge./ Edit the PerfExpert.sge script to ensure the correct executable name, correct directory, correct project name and so on. Submit your job: % qsub PerfExpert.sge To analyze results: /share/home/00976/burtsche/PerfExpert/PerfExpert./hpctoolkit-…. Typical value for threshold is 0.1
48
About Tau TAU is a suite of Tuning and Analysis Utilities www.cs.uoregon.edu/research/tau 11+ year project involving – University of Oregon Performance Research Lab – LANL Advanced Computing Laboratory – Research Centre Julich at ZAM, Germany Integrated toolkit – Performance instrumentation – Measurement – Analysis – Visualization
49
Using Tau Load the papi and tau modules Gather information for the profile run: – Type of run (profiling/tracing, hardware counters, etc…) – Programming Paradigm (MPI/OMP) – Compiler (Intel/PGI/GCC…) Select the appropriate TAU_MAKEFILE based on your choices ( $TAU/Makefile.* ) Set up the selected PAPI counters in your submission script Run as usual & analyze using paraprof – You can transfer the database to your own PC to do the analysis
50
TAU Performance System Architecture
51
Tau: Example Load the papi and tau modules: % module load papi % module load tau Say that we choose to do – a profiling run with multiple counters for a – MPI parallel code and use – the PDT instrumentator with – the PGI compiler The TAU_MAKEFILE to use for this combination is: $TAU/Makefile.tau-multiplecounters-mpi-papi-pdt-pgi So we set it up: % setenv TAU_MAKEFILE $TAU/Makefile.tau-multiplecounters-mpi-papi-pdt-pgi And we compile using the wrapper provided by tau: % tau_cc.sh matmult.c
52
Tau: Example (Cont.) Next we decide which hardware counters to use: – GET_TIME_OF_DAY (time, profiling, similar to using gprof) – PAPI_FP_OPS (Floating Point Operations Per Second) – PAPI_L1_DCM (Data Cache Misses for the cache Level 1) We set these as environmental variables in the command line or the submission script. For csh: % setenv COUNTER1 GET_TIME_OF_DAY % setenv COUNTER2 PAPI_FP_OPS % setenv COUNTER3 PAPI_L1_DCM For bash: % export COUNTER1 = GET_TIME_OF_DAY % export COUNTER2 = PAPI_FP_OPS % export COUNTER3 = PAPI_L1_DCM The we send the job through the queue as usual.
53
Tau: Example (Cont.) When the program finishes running one new directory will be created for each hardware counter we specified: – MULTI__GET_TIME_OF_DAY – MULTI__PAPI_FP_OPS – MULTI__PAPI_L1_DCM Analize the results with paraprof: % paraprof
54
TAU: ParaProf Manager Counters we asked for Provides Machine Details Organizes Runs as: Applications, Experiments and Trials.
55
Tau: Metric View Information includes Mean and Standard Deviation Windows->Function Legend Profile Information is in “GET_TIME_OF_DAY” metric Mean and Standard Deviation Statistics given.
56
Tau: Metric View Unstack the bars for clarity: Options -> Stack Bars Together
57
Tau: Function Data Window Click on any of the bars corresponding to function multiply_matrices. This opens the Function Data Window, which gives a closer look at a single function.
58
Tau: Float Point OPS Hardware Counters provide Floating Point Operations (Function Data view).
59
Tau: L1 Cache Data Misses
60
Derived Metrics Select Argument 1 (green ball); Select Argument 2 (green ball); Select Operation; then Apply. Derived Metric will appear as a new trial.
61
Derived Metrics (Cont.) Select a Function Function Data Window -> Options -> Select Metric -> Exclusive -> …
62
Derived Metrics Be careful even though ratios are constant, cores may do different amounts of work/operations per call. Since FP/Miss ratios are constant– must be memory access problem.
63
Callpath To find out about function calls within the program, follow the same process but using the following TAU_MAKEFILE: Makefile.tau-callpath-mpi-pdt-pgi In the Metric View Window two new options will be available under: – Windows -> Thread -> Call Graph – Windows -> Thread -> Call Path Relations 63
64
Callpath Call Graph Paths (Must select through “thread” menu.)
65
Call Path
66
Profiling dos and don’ts DO Test every change you make Profile typical cases Compile with optimization flags Test for scalability DO NOT Assume a change will be an improvement Profile atypical cases Profile ad infinitum – Set yourself a goal or – Set yourself a time limit
67
Other Profiling Tools In Ranger Scalasca scalasca.org – Scalable all-in-one profiling package. – Requires re-compilation of source to instrument, like Tau. – Accessible by loading the scalasca module: –module load scalasca HPCToolkit hpctoolkit.org – All-in-one package similar to Tau and Scalasca but of more recent development – Uses binary instrumentation, so recompilation of the code is not required – Accessible via developer’s installation under: /scratch/projects/hpctoolkit/pkgs/hpctoolkit/bin/
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.