Download presentation
Presentation is loading. Please wait.
Published byJoshua Lyons Modified over 9 years ago
1
A NEW ECO TECHNOLOGY FOR FUNCTIONAL CHANGES AND REMOVING TIMING VIOLATIONS Jui-Hung Hung, Yao-Kai Yeh,Yung-Sheng Tseng and Tsai-Ming Hsieh Dept. of Information and Computer Engineering Chung Yuan Christian University 1
2
Outline Introduction Problem Formulation Algorithm Experimental Results Conclusions 2
3
Outline Introduction Problem Formulation Algorithm Experimental Results Conclusions 3
4
Introduction The cost of remaking a complete photomask is very expensive, such that spare cells rewiring is a convenient way to repair the problems of functional change or timing violation. Engineering Change Order (ECO), is an effective technique for fixing circuit functionality and timing problems after the placement stage. 4
5
Introduction(cont.) Spare cells are pre-injected after the placement stage and not connect to other cells, therefore we have to modify the netlist information and replace the original standard cell by spare cells. 5
6
Introduction(cont.) Assuming that we have to use spare cells to implement a function NAND2 whose two input nets and one output net are denoted by NET1, NET2, NET3 6
7
Introduction(cont.) 7
8
There are two main research directions ECO for functional changes ECO for timing optimizations We can assume the ECO problem as resource allocation problem and competition among timing and functional ECO. 8
9
Outline Introduction Problem Formulation Algorithm Experimental Results Conclusions 9
10
Problem Formulation(cont.) Given: original circuit(netlist and cell placement) a set of spare cells a cell library a set of timing constraints a set of functional changes. Our approach is to complete the functional changes by the spare cells rewiring and with the goal of minimum total wiring cost. 10
11
Problem Formulation Wiring cost Sum of the half perimeter of the minimum bounding box (HPBB) of each net. cost(i) = HPBB(i) = xspan(i)+ yspan(i) 11
12
Outline Introduction Problem Formulation Algorithm Experimental Results Conclusions 12
13
Algorithm 13
14
Algorithm(cont.) Technology Mapping Table Generation Spare Cell Selection Matching Timing Analysis Buffer Insertion and Gate Sizing 14
15
Algorithm(cont.) Technology Mapping Table Generation We transform the functional change to Boolean expression. NOR NAND DeMorgan’s Theorems Constant insertion[1] 15
16
Technology Mapping Table Generation 16
17
Spare Cell Selection In spare cell selection, we regard this problem as a question of resource allocation, with timing consideration to choose spare cell combinations with smaller timing influence. 17
18
Spare Cell Cost Estimation 18
19
Spare Cell Cost Estimation(cont.) Using multiple spare cell 19
20
20
21
21
22
Matching When different ECO functions require the same spare cell, we need to reallocate resources until the requirement is satisfied. We can define the “spare cell selection for functional change” problem into a resource allocation and competition among timing and functional ECO. 22
23
Matching(cont.) Use Hungarian Algorithm to find the better match which with minimum wiring cost in a bipartite graph. 23
24
Timing Analysis Apply Synopsys’s Liberty library to simulate the circuit timing. By the two indexes of input transition time and downstream capacitance, we can calculate the gate delay time and output transition time by lookup tables. 24
25
Timing Analysis(con’t) The downstream capacitance calculation is defined as: Downstream components capacitance plus Downstream wire capacitance Downstream components capacitance Total input pin capacitance of fan-out gates Downstream wire capacitance Sum of the Manhattan distance between current component and the downstream component multiply by the capacitance per wirelength. 25
26
Buffer insertion and gate sizing spare cell search range α : capacitance per unit wirelength β : a user defined value between 1 to 1.5. 26
27
Outline Introduction Problem Formulation Algorithm Experimental Results Conclusions 27
28
Experimental Results 28
29
Experimental Results 29
30
Outline Introduction Problem Formulation Algorithm Experimental Results Conclusions 30
31
Conclusions This paper present a new ECO technique for functional changes and timing optimizations simultaneously. The experimental results show that it not only completes functional changes in a reasonable run time but also fixes most timing violation paths. 31
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.