Presentation is loading. Please wait.

Presentation is loading. Please wait.

HMRT23: Overview of calculations performed HRMT23 Internal Review, 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado Paz EN-MME-EDS.

Similar presentations


Presentation on theme: "HMRT23: Overview of calculations performed HRMT23 Internal Review, 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado Paz EN-MME-EDS."— Presentation transcript:

1 HMRT23: Overview of calculations performed HRMT23 Internal Review, 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado Paz EN-MME-EDS

2 Outline F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado  Calculations of HRMT23 test bench components  TCSG and TCSx jaws: physical quantities in HRMT23  Lessons from HRMT14: CuCD vs. MoGr  Conclusions 3/7/20142

3 Outline F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado  Calculations of HRMT23 test bench components  TCSG and TCSx jaws: physical quantities in HRMT23  Lessons from HRMT14: CuCD vs. MoGr  Conclusions 3/7/20143

4 HRMT23 test bench components Test bench support – Static deformation F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/2014  4 tank supports (load = 1000 kg)  3 sferax for the vertical movement  Does the plate flexion induce stress on the sferax?  NO: Maximum horizontal displacement: 7 μm (inside manufacturing tolerances) 4

5 Optical windows: atmospheric pressure 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado  External pressure: 1.5 bar  Fixed supports on the contour  Maximum total displacement: 1.7 μm  Maximum stress intensity: 4.8 MPa  When using fused silica: maximum admissible stress ~ 55MPa HRMT23 test bench components 5

6 Optical windows: expected dose 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado HRMT23 test bench components  HRMT14  2E14 protons  HRMT23  6E14 protons  Dose on glasses HRMT23 = 3x(HRMT14) = 2 kGy x 3 = 6 kGy  Factor of 5 introduced due to different geometry, uncertainties in the number of pulses, etc.  dose expected on a glass during HRMT23 = 5 x 6 = 30 kGy Glass specification:  High residual transparency at doses > 30 kGy  Flexural resistance > 15 MPa 6

7 Vacuum tank 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado HRMT23 test bench components 7  Material: 304L v.p.  Load: 1.5bar  Maximum stress: 84 MPa  Buckling Factor: 90 !

8 Beryllium window 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado HRMT23 test bench components 8  Different beam size and window orientation considered  In all cases a plastic deformation is observed  Ultimate strain ~ 0.05  T melt = 1278ºC BeamMaximum eqv Strain (m/m)Max Temperature (ºC) 4.9e13p; σ=0.3mm; angle: 0º 0.037857 6e13p; σ=0.3mm; angle: 0º 0.051957 4.9e13p; σ=0.25mm; angle: 0º 0.0851205 4.9e13p; σ=0.25mm; angle: 45º 0.0531048  Maximum beam sigma allowed = 0.3 mm!

9 Outline F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado  Calculations of HRMT23 test bench components  TCSG and TCSx jaws: physical quantities in HRMT23  Lessons from HRMT14: CuCD vs. MoGr  Conclusions 3/7/20149

10 TCSG and TCSx impact Simulation model and parameters F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201410 Energy450 GeV Particle typeprotons Beam size (sigma, both planes)1 mm Beam divergencenone Impact parameter5 sigma Beam directionParallel to jaw axis Number of protons6.40E+13 Number of bunches288 Impact duration7.2E-6 s TCSx Beam TCSG Beam

11 TCSG and TCSx impact Temperature at the end of the deposition F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201411 TCSx T max =1720˚C  T melt_MoGr > 2500 ˚C T max =740˚C TCSG  T melt_Gl ~ 1090 ˚C T max,Gl =200˚C

12 TCSG and TCSx impact Shockwave propagation F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201412

13 TCSG and TCSx impact Maximum absolute values to be acquired on the active surface F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201413 TCSGTCSx Speed (m/s)6~ 10 Strain (%)0.130.83 Stress (MPa)116265

14 TCSG and TCSx impact Maximum stresses F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201414   x,max = 56 MPa;  x,min = -125 MPa   y,max = 265 MPa;  y,min = -100 MPa   z,max = 38 MPa;  z,min = -146 MPa Reference: MG3110P   Rz,flex ~ 85 MPa;  Rx,flex = ?   Rz,comp,  Rx,comp = ? TCSx  x  max =56MPa  x  min =-125MPa   x,max = 18.5 MPa;  x,min = -67 MPa   y,max = 116.6MPa;  y,min = -27.5 MPa   z,max = 56.5 MPa;  z,min = -41.2 MPa Reference: CFC (AC150k)   Rz,flex ~ 120 MPa;  Rx,flex = 10MPa   Rz,comp = 60MPa;  Rx,comp = ? TCSG

15 TCSG and TCSx impact Maximum strains F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201415   x,max = 0.43%;  x,min = -0.83%   y,max = 0.47%;  y,min = -0.1%   z,max = 0.05%;  z,min = -0.11% Reference: MG3110P   Rz,flex ~ 0.35% MPa;  Rx,flex = ?   Rz,comp,  Rx,comp = ? TCSx  x  max =0.43%  x  min =-0.83%   x,max = 0.35%;  x,min = -1.32%   y,max = 0.13%;  y,min = -0.10%   z,max = 0.05%;  z,min = -0.02% Reference: CFC (AC150k)   Rz,flex = ?;  Rx,flex = ?   Rz,comp,  Rx,comp = ? TCSG  x  max =0.35%  x  min =-1.32%

16 TCSG and TCSx impact TCSG plastic deformation F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201416 ε pl = 0.18% ε pl = 0.12%

17 TCSG and TCSx impact Maximum absolute values to be acquired on the active surface F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201417 TCSGTCSx Speed (m/s)6~ 10 Strain (%)0.130.83 Stress (MPa)116265

18 TCSP Impact 3/7/2014F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado18

19 Outline F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado  Calculations of HRMT23 test bench components  TCSG and TCSx jaws: physical quantities in HRMT23  Lessons from HRMT14: CuCD vs. MoGr  Conclusions 3/7/201419

20 Aim Copper-Diamond 144 bunches Molybdenum-Graphite (3 grades) 144 bunches MoGRCF-3 Implicit approach Evaluate thermal response of samples at impact during HMRT14 Link to simulations folder F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201420

21 ‘Energy Deposition Results in: HRMT14 Samples…’; AdColMat #3, A. Manousos, V. Vlachoudis time 250ns 72 bunches, 25ns bunch spacing MoGRCF3 CuCD Beam Characteristics F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201421

22 Material properties: CuCD CuCD Properties ρ (g/cm3)5.4 c (J/kg-K) k (W/m-K)490 CTE (K -1 )7.8e-6 E (GPa)220 v (-)0.22 ‘Development of Novel, Advanced…’; Doct. Thesis, N.Mariani Link to Material properties research Plastic behaviour at high T: Case 1 (driven by Diamond): Brittle, E=const.=220GPa Case 2 (driven by Cu): Plasticity starting from tensile limit value @ T AMB T (°C) c 200 400 600800 1000 450 850 E=220GPa E TAN =500MPa 70 ε (-) σ (MPa) i.e. Studying the upper and lower boundaries F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201422

23 Material properties: MoGR x,yz ρ (g/cm3)3.65 c (J/kg-K) k (W/m-K) CTE (K-1)3e-61e-5 E (GPa)5512 v (-)0.3 ‘Development of Novel, Advanced…’; Doct. Thesis, N.Mariani Link to Material properties research K x,y (W/m-K) K z (W/m-K) 50 400 250 100 500 1000 T (°C) 500 1000 75 25 T (°C) 500 1000 0 1400 600 c (J/kg-K) F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201423

24 MoGRCF-3

25 Results: Thermal T sample_MAX /T MELT = 778/2505=0.3 [°C] [μs] T MELT T sample 2500 1500 500 0 4 8 12 16 20 beam F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201425

26 Results: Structural σ 1st_principal [MPa] Energy deposition 92 95 50 0 95 (s) beam F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado (Just..) below values for rupture (96MPa) 3/7/201426

27 Results: Structural 118 96 σ TRESCA [MPa] 118 50 100 (s) Energy deposition Volume for σ TRESCA > σ uts (=96MPa) beam F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201427

28 CuCD

29 T MAX /T MELT =1.1 T sample [°C] [μs] Results: Thermal F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201429

30 ~15mm ~R1 Symmetry surface Molten volume beam Inside sample = not detectable on images Results: Thermal F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201430

31 Case 1 : material behaviour mostly driven by Diamond  Brittle, E=const.=220GPa * * Lever rule would give tangent modulus =173GPa (i.e. Behaviour highly similar to that of a ideally elastic CuCD with E=T=220GPa) Results: Structural Red means failure... As sample is still standing, this means different material behaviour than ‘brittle with 70MPa tensile strength’ at higher T, dε F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201431

32 Results: Structural Case 2 : @ impact, material properties driven by Cu Subjective hypothesis: plasticity starting from tensile limit value @ T AMB (i.e. at 70MPa) F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201432

33 Results: Structural Case 2 : @ impact, material properties driven by Cu Subjective hypothesis: plasticity starting from tensile limit value @ T AMB (i.e. at 70MPa) F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201433

34 Optical change on CuCD surface ~R2 Explainable with surface phenomena due to ‘thermal treatment’ Blue surface - typical color for oxydation due to: -High surface temperature (promotes oxydation) -Presence of O particles due to bad vacuum (>1e-3mbar) Cleaned surface due to: -At T>400C, oxide reduction via diffusion into bulk ‘Copper oxide reduction through vacuum annealing’ Lee et al., Elsevier 2002 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201434

35 ~R2 Optical change on CuCD surface ~R3.5 400C CONCLUSION: Visual change is not hint of structural phenomena (deformations) F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201435

36 Conclusions 3/7/2014F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado36  Engineering calculations on the components under design for the new test bench don’t highlight any issue  Thermo-mechanical dynamic calculations were performed on CFC and MoGr jaws to evaluate amplitude and frequency of the phenomena to acquire  The calculated values are relatively low and well inside the measurement range of LDV and strain gauges: could we have the opposite problem, too low signals for the noise level? –> see Michael’s presentation  The same calculation done for TCSx MoGr should be repeated for CuCD  Dynamic simulations can also be used to predicted failure or survival of the jaws: ultimate strain and stress is going to be measured at the mechanical lab  Glidcop housing and cooling pipes show plastic strain around 0.1-0.2%!  Marco analysed HRMT14 CuCD and MoGr, explaining the reasons of MoGr survival and CuCD change of surface  According simulations, CuCD melted locally and internally failed: a detailed post-irradiation analysis is needed to confirm that

37 Next steps 3/7/2014F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado37  Contact Schott to evaluate a suitable rad-hard glass  Perform FLUKA and ANSYS/AUTODYN simulations on the full TCSx collimator, with both MoGr and CuCD jaws  The last static step of the simulation will be completed in order to evaluate the residual strain on the housing  Evaluate ultimate strength and strain of MoGr, CFC and CuCD  Improve material models, taking into account pseudo-plasticity of graphite- based materials  …

38 Thanks for your attention!

39 Backup slides

40 ~R2 TCSG Physical quantities ~R3.5 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201440 Data: \\cern.ch\dfs\Users\f\fcarra\Public\Copy of TCSG-0 1ms-xyz-exeyez-uvw.xlsx\\cern.ch\dfs\Users\f\fcarra\Public\Copy of TCSG-0 1ms-xyz-exeyez-uvw.xlsx

41 3/7/2014F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado41 Both configuration meet the requirements but after further analyses the 45°one was chosen. Minimum principal stress for both configurations

42 ~R2 TCSx Physical quantities ~R3.5 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201442 Data: \\cern.ch\dfs\Users\f\fcarra\Public\TCSx_PhysicalQuantities.xlsx\\cern.ch\dfs\Users\f\fcarra\Public\TCSx_PhysicalQuantities.xlsx

43 ~R2 TCSx material properties ~R3.5 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201443 Tempera ture (C) Young's Modulus X direction (Pa) Young's Modulus Y direction (Pa) Young's Modulus Z direction (Pa) Poisson' s Ratio XY Poisson' s Ratio YZ Poisson' s Ratio XZ Shear Modulus XY (Pa) Shear Modulus YZ (Pa)Shear Modulus XZ (Pa) 1.2E+105.5E+10 0.19 8E+092E+108E+09

44 Results: Structural Radial displacement [mm] beam 1e-2 1.3e-2 0 (s) F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201444

45 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201445

46 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201446

47 Conclusions MoGR: temperatures below melting maxima stresses ( σ 1 below rupture) inside specimen  degradation not visible from pics CuCD: Temperatures well over melting (surface color benchmark) Structural: need of Post-mortem/ high T properties analysis Next Steps MoGR: comparison with MG4110 & further upgrades Fluka analysis needed structural measurements ongoing CuCD: F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201447


Download ppt "HMRT23: Overview of calculations performed HRMT23 Internal Review, 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado Paz EN-MME-EDS."

Similar presentations


Ads by Google