Download presentation
Presentation is loading. Please wait.
Published byGillian Walters Modified over 9 years ago
1
PRESENTS DANNY TERNO & ETERA LIVINE With contributions from Asher Peres, Viqar Hussain and Oliver Winkler PRODUCTION
2
when met
3
n Noncovariance of reduced density matrices n Noninvariance of entropy n Implications to holography and thermodynamics Outline n Entanglement and black hole entropy n Entanglement and Hawking radiation Volume 1: new properties Volume 2: old applications
4
Volume 1: new properties
5
Noncovariance (1) spin momentum classical info Example: Lorentz transform of a single massive particle transform: v along the z - axis important parameter:
6
Partial trace is not Lorentz covariant Spin entropy is not scalar Distinguishability depends on motion Entropy Peres and Terno, Rev. Mod. Phys. 76, 93 (2004)
7
here there trace out “there” Bombelli et al, Phys. Rev. D34, 373 (1986) Holzhey, Larsen and Wilczek, Nucl. Phys. B424, 443 (1994) Callan and Wilczek, Phys. Lett. B333, 55 (1994). Noncovariance (2) Geometric entropy
8
= ? no correlations no Bell-type violations not irreducible Transformations do not split into here and there spaces Decomposition of Lorentz transformations Terno, Phys. Rev. Lett. 93, 051303 (2004) trivial 1D rep irrep of 1-particle states
9
Noninvariance (1) Yurtsever, Phys. Rev. Lett. 91, 041302 (2003) Bekenstein, Lett. Nuovo Cim. 4, 737 (1972) …. Busso, Rev. Mod. Phys. 74,825 (2002) Boundary conditions & cut-offs Model Number of degrees of freedom N is frame-dependent
10
Lorentz boost: factors 1/γ Spacelike holographic bound both area and entropy change Saved ? v Terno, Phys. Rev. Lett. 93, 051303 (2004)
11
Black holes: invariance Hawking’s area theorem Model 1+1 calculations: the same crossing point, relative boost Two observers with a relative boost Fiola, Preskill, Strominger, Trivedi, Phys. Rev. D 59, 3987 (1994) -
12
Noninvariance (2) Accelerated cavity Moore, J. Math. Phys. 11, 2679 (1970) Levin, Peleg, Peres, J.Phys.A 25, 6471 (1992) Accelerated observers & matter beyond the horizon Terno, Phys. Rev. Lett. 93, 051303 (2004)
13
Volume 2: old applications
14
Entanglement on the horizon Requirement: SU(2) invariance of the horizon states Object: static black hole States: spin network that crosses the horizon Qubit BH
15
density matrix Standard counting story area constraint 2n spins number of states entropy Fancy counting story entropy
16
Entanglement Measure: entanglement of formation 2 vs 2n-2 States of the minimal decomposition degeneracy indices Alternative decomposition: linear combinations Its reduced density matrices: mixtures Entropy: concavity
17
unentangled fraction entanglement n vs n Entropy of the whole vs. sum of its parts reduced density matrices BH is not made from independent qubits, but… Livine and Terno, gr-qc/0412xxx
18
Entanglement and Hawking radiation Hussein,Terno and Winkler, in preparation
19
Summary when met n Reduced density matrices are not covariant n Entropy (and the # of degrees of freedom) are observer-dependent n Entanglement is responsible for the logarithmic corrections of BH entropy n Entropy of the BH radiation = entanglement entropy between gravity and matter
20
Thanks to Jacob Bekenstein Ivette Fuentes-Schuller Florian Girelli Netanel Lindner Rob Myers Johnathan Oppenheim David Poulin Terry Rudolph Frederic Schuller Lee Smolin Rafael Sorkin Rowan Thomson
21
Technique Technique: Unruh effect Entropy usually diverges General: cut-off renormalization of entropy
22
Unruh+ Unruh + Audretsch and Müller, Phys. Rev. D 49, 4056 (1994) Matter outside the horizon n particles in the mode (k,m) Splitting: usual + super
23
Special case renormalized quantities temperature Of what? two subsystems General case: temperature is undefined Two observers: the same acceleration, different velocities
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.