Presentation is loading. Please wait.

Presentation is loading. Please wait.

ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material.

Similar presentations


Presentation on theme: "ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material."— Presentation transcript:

1

2

3

4 ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material properties? Are defects undesirable? How do point defects in ceramics differ from those in metals? In ceramics, how are impurities accommodated in the lattice and how do they affect properties? IMPERFECTIONS IN SOLIDS

5 Vacancy atoms Interstitial atoms Substitutional atoms Dislocations Grain Boundaries Point defects Line defects Area defects TYPES OF IMPERFECTIONS

6 Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic sites. POINT DEFECTS

7 Low energy electron microscope view of a (110) surface of NiAl. Increasing T causes surface island of atoms to grow. Why? The equil. vacancy conc. increases via atom motion from the crystal to the surface, where they join the island. Reprinted with permission from Nature (K.F. McCarty, J.A. Nobel, and N.C. Bartelt, "Vacancies inNature Solids and the Stability of Surface Morphology", Nature, Vol. 412, pp. 622-625 (2001). Image is 5.75  m by 5.75  m.) Copyright (2001) Macmillan Publishers, Ltd. OBSERVING EQUIL. VACANCY CONC. Click on image to animate

8 are line defects, cause slip between crystal plane when they move, produce permanent (plastic) deformation. Dislocations: Schematic of a Zinc (HCP): before deformation after tensile elongation slip steps LINE DEFECTS

9

10 Dislocations slip planes incrementally... The dislocation line (the moving red dot)......separates slipped material on the left from unslipped material on the right. Simulation of dislocation motion from left to right as a crystal is sheared. (Courtesy P.M. Anderson) INCREMENTAL SLIP Click on image to animate

11 Dislocation motion requires the successive bumping of a half plane of atoms (from left to right here). Bonds across the slipping planes are broken and remade in succession. Atomic view of edge dislocation motion from left to right as a crystal is sheared. (Courtesy P.M. Anderson) BOND BREAKING AND REMAKING Click on image to animate

12 Ti alloy after cold working: Dislocations entangle with one another during cold work. Dislocation motion becomes more difficult. Adapted from Fig. 4.6, Callister 6e. (Fig. 4.6 is courtesy of M.R. Plichta, Michigan Technological University.) DISLOCATIONS DURING COLD WORK

13 Dislocation generate stress. This traps other dislocations. DISLOCATION-DISLOCATION TRAPPING

14 Grain boundaries: are boundaries between crystals. are produced by the solidification process, for example. have a change in crystal orientation across them. impede dislocation motion. Schematic Adapted from Fig. 4.7, Callister 6e. Adapted from Fig. 4.10, Callister 6e. (Fig. 4.10 is from Metals Handbook, Vol. 9, 9th edition, Metallography and Microstructures, Am. Society for Metals, Metals Park, OH, 1985.) ~ 8cm Metal Ingot AREA DEFECTS: GRAIN BOUNDARIES

15 Grain boundaries... are imperfections, are more susceptible to etching, may be revealed as dark lines, change direction in a polycrystal. Adapted from Fig. 4.12(a) and (b), Callister 6e. (Fig. 4.12(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC [now the National Institute of Standards and Technology, Gaithersburg, MD].) OPTICAL MICROSCOPY (2)

16 Metals: Disl. motion easier. -non-directional bonding -close-packed directions for slip. electron cloudion cores Covalent Ceramics (Si, diamond): Motion hard. -directional (angular) bonding Ionic Ceramics (NaCl): Motion hard. -need to avoid ++ and -- neighbors. DISLOCATIONS & MATERIALS CLASSES

17 Produces plastic deformation, Depends on incrementally breaking bonds. Plastically stretched zinc single crystal. If dislocations don't move, deformation doesn't happen! Adapted from Fig. 7.1, Callister 6e. (Fig. 7.1 is adapted from A.G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, New York, 1976. p. 153.) Adapted from Fig. 7.9, Callister 6e. (Fig. 7.9 is from C.F. Elam, The Distortion of Metal Crystals, Oxford University Press, London, 1935.) Adapted from Fig. 7.8, Callister 6e. DISLOCATION MOTION

18 Dislocations slip planes incrementally... The dislocation line (the moving red dot)......separates slipped material on the left from unslipped material on the right. Simulation of dislocation motion from left to right as a crystal is sheared. (Courtesy P.M. Anderson) INCREMENTAL SLIP

19 Dislocation motion requires the successive bumping of a half plane of atoms (from left to right here). Bonds across the slipping planes are broken and remade in succession. Atomic view of edge dislocation motion from left to right as a crystal is sheared. (Courtesy P.M. Anderson) BOND BREAKING AND REMAKING

20 Structure: close-packed planes & directions are preferred. Comparison among crystal structures: FCC: many close-packed planes/directions; HCP: only one plane, 3 directions; BCC: none Mg (HCP) Al (FCC) tensile direction Results of tensile testing. view onto two close-packed planes. DISLOCATIONS & CRYSTAL STRUCTURE

21 Crystals slip due to a resolved shear stress,  R. Applied tension can produce such a stress. STRESS AND DISLOCATION MOTION slip direction slip direction slip plane normal, n s slip direction

22 Condition for dislocation motion: Crystal orientation can make it easy or hard to move disl. CRITICAL RESOLVED SHEAR STRESS

23 Slip planes & directions (,  ) change from one crystal to another.  R will vary from one crystal to another. The crystal with the largest  R yields first. Other (less favorably oriented) crystals yield later. Adapted from Fig. 7.10, Callister 6e. (Fig. 7.10 is courtesy of C. Brady, National Bureau of Standards [now the National Institute of Standards and Technology, Gaithersburg, MD].) 300  m DISL. MOTION IN POLYCRYSTALS

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49


Download ppt "ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material."

Similar presentations


Ads by Google