Download presentation
Presentation is loading. Please wait.
Published byMagdalene Knight Modified over 9 years ago
1
A. Rivetti – INFN Sezione di Torino Lecture II Lecture II: Linear circuit theory review Amplifier basics MOS small signal model
2
A. Rivetti – INFN Sezione di Torino Nodal analysis IsIs VsVs R1R1 R2R2 R3R3 R4R4 Nodal analysis provides a systematic and reliable method to calculate all voltages and currents in a linear circuit Nodal analysis
3
A. Rivetti – INFN Sezione di Torino Writing nodal equations R2R2 R4R4 IsIs VsVs R1R1 R3R3 v1v1 v2v2 Nodal analysis
4
A. Rivetti – INFN Sezione di Torino Writing the circuit matrix IsIs VsVs R1R1 R2R2 R3R3 R4R4 v1v1 v2v2 Nodal analysis
5
A. Rivetti – INFN Sezione di Torino Solving the circuit matrix Nodal analysis
6
A. Rivetti – INFN Sezione di Torino Another example IsIs VsVs R1R1 R2R2 R3R3 R4R4 Nodal analysis
7
A. Rivetti – INFN Sezione di Torino Lecture II Lecture II: Linear circuit theory review Amplifier basics MOS small signal model
8
A. Rivetti – INFN Sezione di Torino Amplifier characteristic The input-output characteristic of an amplifier is usually a non-linear function Over some interval of the input signal, this function can be approximated by a polynomial: For narrow range of the input signal, we may write: The above expression does not obey the superposition principle Amplifier basics
9
A. Rivetti – INFN Sezione di Torino Small signal model If a 0 does not depend on the signal, we can write: This is an expression that obeys the superposition principle The small signal model takes into account only variations of signals within a circuit The small signal equivalent circuit can be studied with the methods of linear circuit analysis Amplifier basics
10
A. Rivetti – INFN Sezione di Torino Voltage amplifier V s (t) Ri Rs Vout V i (t) A V = Vout/Vi Input impedance high (ideally infinite) Output impedance small (ideally zero) Amplifier basics
11
A. Rivetti – INFN Sezione di Torino VA small signal model AVViAVVi Vout V s (t) RIRI RSRS V i (t) RORO RLRL Note: impedances may also be complex Amplifier basics
12
A. Rivetti – INFN Sezione di Torino Current amplifier A V = Iout/Ii Input impedance small (ideally zero) Output impedance high (ideally infinite) Ri Rs Iout I i (t) I s (t) Amplifier basics
13
A. Rivetti – INFN Sezione di Torino CA small signal model Note: impedances may also be complex Amplifier basics Ri Rs I i (t) I s (t) RLRL I out (t) Ro I s (t)
14
A. Rivetti – INFN Sezione di Torino Transconductance amplifier V s (t) Ri Rs Iout V i (t) A V = Iout/Vi Input impedance high (ideally infinite) Output impedance high (ideally infinite) Important: the gain is not a number Amplifier basics
15
A. Rivetti – INFN Sezione di Torino TCA small signal model Note: impedances may also be complex Amplifier basics V s (t) RIRI RSRS V i (t) RLRL I out (t) Ro I s (t)
16
A. Rivetti – INFN Sezione di Torino Transimpedance amplifier A V = Vout/Ii Input impedance small (ideally zero) Output impedance small (ideally zero) Note: Gain is not a number Amplifier basics Ri Rs Vout I i (t) I s (t)
17
A. Rivetti – INFN Sezione di Torino TA small signal model Note: impedances may also be complex Ri Rs I i (t) I s (t) AVViAVVi Vout RORO RLRL Amplifier basics
18
A. Rivetti – INFN Sezione di Torino Lecture II Lecture II: Linear circuit theory review Amplifier basics MOS small signal model
19
A. Rivetti – INFN Sezione di Torino Simplified small signal DC model RSRS gmgm V GS I DS == nn C OX W L (V GS – V TH ) 2 nn C OX W L I DS = The MOS transistor in saturation can be seen as a voltage controlled current source V s (t) gmVs MOS small signal DC model
20
A. Rivetti – INFN Sezione di Torino Practical example What is the equivalent small signal model of this? W=100 m L=10 m n C OX =190 A/V 2 V TH =0.6 V Vdrain=2.5 V Vgate=1.25 V MOS small signal DC model V gate V drain VsVs
21
A. Rivetti – INFN Sezione di Torino Gm simulation(1) MOS small signal DC model Vs=1mV pk-pk 355.7 356.7 012 time ( S) current ( A)
22
A. Rivetti – INFN Sezione di Torino Gm simulation (2) MOS small signal DC model Vs=250mV pk-pk 355 660 current ( A) 012 time ( S)
23
A. Rivetti – INFN Sezione di Torino Output impedance MOS small signal DC model V gate V drain VsVs r0r0
24
A. Rivetti – INFN Sezione di Torino Including the output impedance RSRS gmgm V GS I DS == nn C OX W L (V GS – V TH ) 2 nn C OX W L I DS = ro 1 I DS = The MOS transistor in saturation can be seen as a voltage controlled current source with finite output impedance V s (t) ro gmVs MOS small signal DC model
25
A. Rivetti – INFN Sezione di Torino Bulk transconductance g mb V BS I DS == nn C OX W L (V GS – V TH ) V SB V TH = gmgm 2 F + V SB MOS small signal DC model RSRS V s (t) ro gmVs gmbvbs For a more accurate model, the bulk effect must also be taken into account
26
A. Rivetti – INFN Sezione di Torino Small signal DC model The saturated MOS transistor is a voltage controlled current source with finite output impedance RSRS V s (t) ro gmVsgmbvbs gm models the gate transconductance gmb models the bulk transconductance (the bulk effect) MOS small signal DC model
27
A. Rivetti – INFN Sezione di Torino Some numbers… gmgm V GS I DS == 2 nn C OX W L I DS ro 1 I DS = I DS = 100 A, W/L=50, n C OX =190 A/V 2 =0.01V -1 gm = 1mS ro = 1M MOS small signal DC model
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.