Download presentation
Presentation is loading. Please wait.
Published byLuke Davis Modified over 9 years ago
1
RECENT STUDIES OF OXYGEN- IODINE LASER KINETICS Azyazov V.N. and Pichugin S.Yu. P.N. Lebedev Physical Institute,Samara Branch, Russia Heaven M.C. Emory University, Atlanta, USA
2
Chemical OIL (COIL) Cl 2 +НО 2 - HCl + Cl - +О 2 ( 1 ) P О2 100 Тор, =[О 2 ( 1 )]/[O 2 ] 50 % Discharge OIL (DOIL) О 2 (Х) + е О 2 ( 1 ) + е P О2 10 Тор, 20 % O 3 -SF 6 -N 2 O О 2 (а 1 )-O( 1 D)-I 2 (или CH 3 I) UV photolysis Photolytic OIL (PhOIL) О 3 + hv О 2 ( 1 ) + O( 1 D) P О2 1 Тор, 90 % О2О2 + - О 2 ( 1 ), О NO 2 I 2 Nozzle Resonator О2О2
3
ENERGY LEVELS OF I, O 2, I 2, H 2 O
4
List of reactions that of importance in the DOIL and PhOIL # ProcessRate constant, cm 3 s -1 O 2 ( 1 ) formation 1 O 2 ( 3 ) + e O 2 ( 1 ) + e EE energy exchange 2323 O 2 ( 1 ) + I( 2 P 3/2 ) O 2 ( 3 ) + I( 2 P 1/2 ) O 2 ( 3 ) + I( 2 P 1/2 ) O 2 ( 1 ) + I( 2 P 3/2 ) 7.8×10 -11 2.6×10 -11 I atoms formation 4545 I 2 (X) + O( 3 P) IO+ I( 2 P 3/2 ) IO + O( 3 P) O 2 ( 3 ) + I( 2 P 3/2 ) 1.4×10 -10 1.5×10 -10 I( 2 P 1/2 ) quenching 6 7 8 9 10 11 I( 2 P 1/2 ) + O 2 ( 1 ) I( 2 P 3/2 ) + O 2 ( 1 ) I( 2 P 1/2 ) + I 2 (X) I( 2 P 3/2 ) + I 2 (X) I( 2 P 1/2 )+ O( 3 P) I( 2 P 3/2 ) + O( 3 P) I( 2 P 1/2 )+ O 3 products I( 2 P 1/2 )+ NO 2, N 2 O 4 I( 2 P 3/2 ) + NO 2, N 2 O 4 I( 2 P 1/2 )+ N 2 O I( 2 P 3/2 ) + N 2 O 1.1×10 -13 3.8×10 -11 ? К(Т)? O 3 formation 12 13 14 O 2 + O 2 + O( 3 P) O 3 + O 2 O( 3 P) + O( 3 P) + O 2 O 3 + O( 3 P) O( 3 P) + O 2 + Ar O 3 + Ar 5.9×10 -34 cm 6 /s O 3 removal 15 16 17 I( 2 P 3/2 ) + O 3 IO + O 2 O 2 ( 1 ) + O 3 O 2 + O 2 + O( 3 P) O 2 ( 1 ) + O 3 O 2 ( 1 ) + O 3 1.2 10 -12 1.5 10 -11 3.3 10 -12 IO +IO reaction 18 19 IO + IO O 2 + 2 I( 2 P 3/2 ) IO 2 + I( 2 P 3/2 ) IO + IO + M I 2 O 2 + M 8×10 -12 3.2×10 -11 5.6×10 -30 cm 6 /s O 2 (a 1 ) quenching 20 O 2 ( 1 ) +O( 3 P) + O 2 2O 2 + O( 3 P) ? O( 3 P) scavenge 21 O( 3 P) + NO 2 O 2 + NO9.7 10 -12
5
The low-pressure flow cell apparatus with a jet-type SOG Dependence of the I* concentration on the distance along the flow for w =3 %, O 2 :N 2 =1:1
6
Quenching of O 2 ( 1 ) has a minimal effect on the I 2 dissociation rate Reducing [O 2 ( 1 )] by an order of magnitude caused a slight increasing of the dissociation time O2(1)O2(1) I* Testing role of O 2 ( 1 ) by addition of CO 2
7
Role of I 2 (B) in the iodine dissociation Branching fraction B =5 10 5 s -1, b =0.08 s -1 I 2 (A, A') + O 2 (a) I 2 ( 1 Π 1u ) + O 2 (X) I + I + O 2 (X), approx=100 % I 2 (B) + M I + I + M, < 1 % COIL active medium luminescence spectra in the visible range recorded with a resolution of 1 nm at P c = 2.3 Torr, I2 =0.5%, N 2 :O 2 =1:1
8
Estimation of excitation probabilities from Barnault et al. measurements I*+ I 2 I+I 2 (X,v) v - excitation probability of v-th vibrational level m≤v≤n = v 25 0.1 10<v 23 0.9 (0 for dashed curve ) Standard dissociation model with v 25 0.1 can not provide observed dissociation rates in COIL medium. About 20 molecules of O 2 (a) consumed to dissociate one I 2 molecule if standard model is predominant dissociation pathway.
9
Pump-probe technique used to study OIL kinetics Monochro mator Ge Digital Oscilloscope Nd/YAG Pumped Dye Laser Delay Generator Pump Fluorescence cell I 2 +Ar Light baffles Quenching gas Excimer laser Rate of I 2 (A') quenching (R q ) depends on CO 2 partial pressure Р СО2 at P Ar =50 Torr, Р I2 =0.013 Torr and T=300 K K CO2 = 8.5 10 -13 cm 3 /s K Ar = 2.7 10 -14 cm 3 /s K O2 = 6 10 -12 cm 3 /s K I2 = 4.8 10 -11 cm 3 /s
10
N 2 O,NO 2 or O 3 Pump 193 or 248 nm Power meter 1268 nm filter Ge photo- detector O 2 ( 1 ) formation: N 2 O +193 nm O( 1 D) + N 2 O( 1 D) + N 2 O N 2 + O 2 ( 1 ) ? O( 3 P) + NO 2 NO + O 2 ( 1 ) ? O 3 +248 nm O( 1 D) + O 2 ( 1 ) O 2 ( 1 ) O 2 ( 3 )+1268 nm Branching fraction for O 2 ( 1 ) from O( 1 D)+N 2 O & O( 3 P)+N 2 O Typical temporal profiles of the 1268 nm emission intensities for the N 2 O photolysis experiment (I N2O ) – P N2O =207 Torr, P Ar =407 Torr and for the O 3 photolysis experiment (I O3 )- P N2 =755 Torr, P Ar =1.3 Torr # I N2O mV I O3 mV E 193 mJ E 248 mJ a 1234512345 0.15 0.14 0.11 0.35 0.33 0.51 0.33 14.4 15.8 14.2 16 11 11.2 18.4 11.2 1.03 0.94 1.03 0.97 1.05 Yield O( 1 D) + N 2 O N 2 + O 2 ( 1 ) 100 % O( 3 P) + NO 2 NO + O 2 ( 1 ) <10 %
11
Quenching I( 2 P 1/2 ) by О( 3 Р), О 3 N 2 O + 193 нм N 2 + O( 1 D) O( 1 D) + N 2 O N 2 + O 2 ( 1 ) NO + NO O 3 +248 nm O( 1 D) + O 2 ( 1 ) O( 1 D) + CO 2 (N 2 ) O( 3 P) + CO 2 (N 2 ) I 2 (X) + O( 3 P) IO+ I( 2 P 3/2 ) IO + O( 3 P) O 2 ( 3 ) +I( 2 P 3/2 ) I( 2 P 3/2 ) + O 2 ( 1 ) I( 2 P 1/2 ) + O 2 ( 3 ) I( 2 P 1/2 ) + O( 3 P) I( 2 P 3/2 ) +О( 3 P) I( 2 P 1/2 ) + O 3 products I( 2 P 1/2 ) I( 2 P 3/2 )+ h ( = 1315 nm) Dashed lines are calculations at K O =1.2 10 -11 cm 3 /s K O3 =1.8 10 -12 cm 3 /s
12
Quenching I( 2 P 1/2 ) by NO 2, N 2 O 4 & N 2 O CF 3 I + h (248 nm) CF 3 + I( 2 P 1/2 ) NO2 =2.85x10 -19 cm 2 NO 2 + h (248 nm) O + NO NO2 =2x10 -20 cm 2 N 2 O 4 + h (248 nm) NO 2 + NO 2 N2O4 = 80 NO2 O+ NO+NO 2 K N2O4 = (3.7 0.5)×10 -13 cm 3 /s K NO2 = (2.9 0.3)×10 -15 cm 3 /s K N2O = (1.3 0.1)×10 -15 cm 3 /s
13
Temporal emission intensity of O 2 ( 1 ) at P O3 =2.4 Torr, P tot =773 Torr. Dashed lines are calculations at K=1.1x10 -31 cm 6 /s. NO 2 emission intensity near to 600 nm at P O3 =2.4 Torr, P N2O =2.8 Torr, P tot =762 Torr Quenching of O 2 (a 1 ) in the presence О 2 and O( 3 P) O 3 +h (248 nm) O( 1 D) + O 2 ( 1 ) O( 3 P) + O 2 (X) O 2 ( 1 ) O 2 ( 3 )+ h (1268 nm) O( 3 P) + O 2 ( 1 ) + O 2 O( 3 P) + 2O 2
14
Conclusions Standard dissociation model with v 25 0.1 can not provide observed dissociation rates in COIL medium. About 20 molecules of O 2 (a) consumed to dissociate one I 2 molecule if standard model is predominant dissociation pathway. The total excitation probabilities of I 2 (X,v) in reaction I* + I 2 I + I 2 (X,v>10) are v 25 0.1 and 10<v<25 0.9 I 2 (B) and takes a minor part in iodine dissociation and O 2 (b) does not play a noticeable role in I 2 (B) formation I 2 dissociation pathway involving O 2 (b) state is not major channel
15
Measured kinetic constants : I 2 (A) + CO 2 I 2 (X) + CO 2 (8.5 0.9) 10 -13 cm 3 /s I 2 (A) + O 2 I 2 (X) + O 2 (6.0 0.6) 10 -12 cm 3 /s I 2 (A) + I 2 I 2 (X) + I 2 (4.8 0.9) 10 -11 cm 3 /s I 2 (A) + Ar I 2 (X) + Ar(2.7 0.3) 10 -14 cm 3 /s О 2 (b) + CO 2 О 2 (а) + CO 2 (6.1 0.5) 10 -13 cm 3 /s О 2 (b) + O 3 products(1.9 0.2) 10 -11 cm 3 /s I( 2 P 1/2 ) + O( 3 P) I + O( 3 P) (1.2±0.1) 10 -11 cm 3 /s I( 2 P 1/2 ) + O 3 products(1.8±0.4) 10 -12 cm 3 /s I( 2 P 1/2 ) + NO 2 I + NO 2 (2.9±0.3) 10 -15 cm 3 /s I( 2 P 1/2 ) + N 2 O 4 I + N 2 O 4 (3.7±0.5) 10 -13 cm 3 /s I( 2 P 1/2 ) + N 2 O I + N 2 O(1.3±0.1) 10 -15 cm 3 /s O 2 (a 1 ) + O( 3 P) + O 2 O( 3 P) + 2O 2 (1.1±0.2) 10 -31 cm 6 /s Yield of O 2 (a 1 ) in reactions O( 1 D) + N 2 O N 2 + O 2 ( 3 ) or O 2 ( 1 ) - 1±0.12 O( 3 P or 1 D) + NO 2 NО + O 2 ( 3 ) or O 2 ( 1 ) - < 0.1 Conclusions
16
O 2 (a,v=3)+I 2 (X) O 2 (X)+2I (97) O 2 (a,v=1)+I 2 (X,v 15) O 2 (X)+2I (102) O 2 (a,v=2)+I 2 (X,v 8) O 2 (X)+2I (103) O 2 (b) + I 2 (X) O 2 (X) + 2I (21) Developed I 2 dissociation model I* + I 2 I + I 2 (10<v<25) (33) I 2 (10<v<25)+O 2 (a) O 2 (X)+I 2 (A’,A) (101) O 2 (a,v=1)+I 2 (X) O 2 (X)+I 2 (A’) (95) O 2 (a,v=2)+I 2 (X) O 2 (X)+I 2 (A) (96) O 2 (a)+I 2 (A’,A) O 2 (X)+2I (25) Potential energy curves of I 2. The red and blue arrows show the excitation pathways of energy states lying bellow and above the I 2 dissociation limit, respectively. The inscriptions above arrows denote the reaction producing excitation Heidner et al. model O 2 (a)+I 2 (X) O 2 (X)+ I 2 (20<v<45) (32) I 2 (20<v<45)+O 2 (a) O 2 (X)+2I (34) I* + I 2 I + I 2 (25<v<45) (33)
17
Conclusions A model that involves excitation of I 2 (A’,A) by reactions O 2 (a,v=1)+I 2 (X) O 2 (X)+I 2 (A’) (95) O 2 (a,v=2)+I 2 (X) O 2 (X)+I 2 (A) (96) O 2 (a)+I 2 (A’,A) O 2 (X)+2I (25) I* + I 2 I + I 2 (10<v<25) (33) I 2 (10<v<25)+O 2 (a) O 2 (X)+I 2 (A’,A) (101) yields results that are in reasonable agreement with the flow tube experiments.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.