Download presentation
Presentation is loading. Please wait.
Published byTobias Allen Modified over 9 years ago
1
PSpice を活用した太陽光システムシミュレーション 株式会社ビー・テクノロジー http://www.bee-tech.com/ horigome@bee-tech.com 1Copyright (C) Bee Technologies Inc. 2010
2
Designer EDA Device Model Technology of Simulation 2Copyright (C) Bee Technologies Inc. 2010
3
回路解析シミュレータ PSpice (ABM ライブラリーが豊富 ) デザインキット 回路方式のテンプレート モデル 3Copyright (C) Bee Technologies Inc. 2010 ABM=Analog Behavior Model
4
スパイス・パーク http://www.spicepark.com/ 55 種類のデバイス、 3,316 モデル (2010 年 6 月 30 日現在 ) をご提供中。 現在、グローバル版スパイス・パークを準備中。 http://www.spicepark.com/ 4Copyright (C) Bee Technologies Inc. 2010
5
バッテリーのスパイスモデルの推移 放電特性 付加抵抗一定 放電特性付加 抵抗可変 充電特性 + 放電特性 5Copyright (C) Bee Technologies Inc. 2010 リチウムイオン電池 ニッケル水素電池 鉛蓄電池
6
6Copyright (C) Bee Technologies Inc. 2010 リチウムイオン電池の充放電特性シミュレーションのセミナー及びデモは、 2010 年 7 月 28 日 ( 水曜日 ) 東京 2010 年 7 月 29 日 ( 木曜日 ) 大阪 で開催致します。 info@bee-tech.com までお問い合わせ下さい。 info@bee-tech.com
7
PV Li-Ion Battery System Design Kit 7Copyright (C) Bee Technologies Inc. 2010
8
BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001) Capacity............................65[Wh], 4400[mAh] (Approximately) Rated Current....................3[A] Input Voltage.......................20.5 [Vdc] Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells ) Charging time......................5[hours] (Approximately) 1.1 Lithium-Ion Batteries Pack Specification 8Copyright (C) Bee Technologies Inc. 2010
9
1.2 Discharge Time Characteristics 0.2C ( 880 mA ) 0.5C ( 2200 mA ) 1C ( 4400 mA ) Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale), simulation : real time 1 : 3600s or 1s : 1h Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA) TSCALE=3600 means time Scale (Simulation time : Real time) is 1:3600 9Copyright (C) Bee Technologies Inc. 2010
10
1.3 Single Cell Discharge Characteristics Single cell discharge characteristics are compared between measurement data and simulation data. MeasurementSimulation Single cell 10Copyright (C) Bee Technologies Inc. 2010
11
1.4 Charge Time Characteristics SOC [%] V batt [V]I Charge [A] Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale), simulation : real time 1 : 3600s or 1s : 1h Charger Adaptor Input Voltage = 20.5 Vdc Input Current = 880 mA(max.) 11Copyright (C) Bee Technologies Inc. 2010
12
BP Solar’s photovoltaic module : SX330 Maximum power (P max )..............30[W] Voltage at Pmax (V mp ).............16.8[V] Current at Pmax (I mp )...............1.78[A] Short-circuit current (I sc )...........1.94[A] Open-circuit voltage(V oc )...........21.0[V] 2.1 Solar Cells Specification 502mm 595mm 12Copyright (C) Bee Technologies Inc. 2010
13
2.2 Output Characteristics vs. Incident Solar Radiation Parameter, SOL is added as normalized incident radiation, where SOL=1 for AM1.5 conditions SOL=1 SOL=0.5 SOL=0.16 SOL=1 SOL=0.5 SOL=0.16 Current (A) Power (W) Voltage (V) SX330 Output Characteristics vs. Incident Solar Radiation 13Copyright (C) Bee Technologies Inc. 2010
14
3. Solar Cell Battery Charger Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage. PBT-BAT-0001 (Li-ion batteries pack) – Charging time is approximately 5 hours with charging rate 0.2C or 880mA – Voltage during charging with 0.2C is between 14.7 to 16.9 V 14.7 V 14.9 V 0.2C or 880mA 14Copyright (C) Bee Technologies Inc. 2010
15
3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit Lithium-Ion Batteries Pack Photovoltaic Module Over Voltage Protection Circuit 16.8V Clamp Circuit PBT-BAT-0001 (BAYSUN) DC12.8 ~ 16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Short circuit current I SC depends on condition: SOL 15Copyright (C) Bee Technologies Inc. 2010
16
3.2 PV Li-Ion Battery Charger Circuit Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. 16Copyright (C) Bee Technologies Inc. 2010
17
3.3 Charging Time Characteristics vs. Weather Condition Simulation result shows the charging time for sol = 1, 0.5, and 0.16. sol = 1.00 sol = 0.50 sol = 0.16 17Copyright (C) Bee Technologies Inc. 2010
18
3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current Lithium-Ion Batteries Pack Photovoltaic Module Over Voltage Protection Circuit 16.8V Clamp Circuit PBT-BAT-0001 (BAYSUN) DC12.8 ~ 16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Constant Current Control Circuit I charge =0.2C (880mA) Short circuit current I SC depends on condition: SOL 18Copyright (C) Bee Technologies Inc. 2010
19
3.5 Constant Current PV Li-Ion Battery Charger Circuit Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current. 19Copyright (C) Bee Technologies Inc. 2010
20
3.6 Charging Time Characteristics vs. Weather Condition (Constant Current) Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour. sol = 1.00 sol = 0.50 sol = 0.16 20Copyright (C) Bee Technologies Inc. 2010
21
4.1 Concept of Simulation PV Li-Ion Battery System in 24hr. Lithium-Ion Batteries Pack Photovoltaic Module Over Voltage Protection Circuit 16.8V Clamp Circuit PBT-BAT-0001 (BAYSUN) DC12.8 ~ 16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W DC/DC Converter V open = (V) V close = (V) The model contains 24hr. solar power data (example). DC Load V IN =10~18V V OUT =5V V IN = 5V I IN = 1.5A Low-Voltage Shutdown Circuit 21Copyright (C) Bee Technologies Inc. 2010
22
4.2 Short-Circuit Current vs. Time (24hr.) Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model. The model contains 24hr. solar power data (example). 22Copyright (C) Bee Technologies Inc. 2010
23
4.3 PV-Battery System Simulation Circuit Solar cell model with 24hr. solar power data. Lopen value is load shutdown voltage. Lclose value is load reconnect voltage Set initial battery voltage, IC=16.4, for convergence aid. SOC1 value is initial State Of Charge of the battery, is set as 70% of full voltage. 7.5W Load (5Vx1.5A). Simulation at 15W load, change I1 from 1.5A to 3A 23Copyright (C) Bee Technologies Inc. 2010 DCDC コンバータの簡易モデル DCAC コンバータの簡易モデルもあります。
24
4.3.1 Simulation Result (SOC1=100) C1: IC=16.4 Run to time: 24s (24hours in real world) Step size: 0.01s PV generated current Battery current Battery voltage Battery SOC DC/DC input current DC output voltage.Options ITL4=1000 SOC1=100 Fully charged, stop charging Battery supplies current when solar power drops. PV module charge the battery Charging time 24Copyright (C) Bee Technologies Inc. 2010
25
4.3.2 Simulation Result (SOC1=70) C1: IC=16.4 Run to time: 24s (24hours in real world) Step size: 0.01s SKIPBP PV generated current Battery current Battery voltage Battery SOC DC/DC input current DC output voltage.Options ITL4=1000 SOC1=70 V=Lopen V=Lclose Shutdown Reconnect Fully charged, stop charging Battery supplies current when solar power drops. PV module charge the battery Charging time 25Copyright (C) Bee Technologies Inc. 2010
26
4.3.3 Simulation Result (SOC1=30) C1: IC=15 Run to time: 24s (24hours in real world) Step size: 0.01s Total job time = 2s PV generated current Battery current Battery voltage Battery SOC DC/DC input current DC output voltage.Options ITL4=1000 SOC1=30 V=Lopen V=Lclose Shutdown Reconnect Fully charged, stop charging Battery supplies current when solar power drops. PV module charge the battery Charging time 26Copyright (C) Bee Technologies Inc. 2010
27
4.3.4 Simulation Result (SOC1=10) C1: IC=14.4 Run to time: 24s (24hours in real world) Step size: 0.01s SKIPBP PV generated current Battery current Battery voltage Battery SOC DC/DC input current DC output voltage.Options RELTOL=0.01.Options ITL4=1000 SOC1=10 V=Lclose Shutdown Reconnect Fully charged, stop charging Battery supplies current when solar power drops. PV module charge the battery Charging time 27Copyright (C) Bee Technologies Inc. 2010
28
4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load) C1: IC=16.4 Run to time: 24s (24hours in real world) Step size: 0.001s PV generated current Battery current Battery voltage Battery SOC DC/DC input current DC output voltage.Options ITL4=1000 SOC1=100 Fully charged, stop charging Battery supplies current when solar power drops. PV module charge the battery Charging time V=Lopen Shutdown V=Lopen Shutdown 28Copyright (C) Bee Technologies Inc. 2010
29
4.3.4 Simulation Result (Example of Conclusion) If initial SOC is 100%, – this system will never shutdown. If initial SOC is 70%, – this system will shutdown after 5.185 hours (about 5:11AM.). – system load will reconnect again at 7:40AM (Morning). If initial SOC is 30%, – this system will shutdown after 1.633 hours (about 1:38AM.). – system load will reconnect again at 7:37AM (Morning). If initial SOC is 10%, – this system will start shutdown. – this system will reconnect again at 7:37AM (Morning). With the PV generated current profile, battery will fully charged in about 4.25 hours. 29Copyright (C) Bee Technologies Inc. 2010 The simulation start from midnight(time=0). The system supplies DC load 7.5W.
30
4.3.4 Simulation Result (Example of Conclusion) If initial SOC is 100%, – this system will shutdown after 3.897 hours (about 3:54AM.). – system load will reconnect again at 7:37AM (Morning). – this system will shutdown again at 8:28 PM (Night). With the PV generated current profile, battery will fully charged in about 5.5 hours. 30Copyright (C) Bee Technologies Inc. 2010 The simulation start from midnight(time=0). The system supplies DC load 15W.
31
お問合わせ先 ) info@bee-tech.com Bee Technologies Group 【本社】 株式会社ビー・テクノロジー 〒 105-0012 東京都港区芝大門二丁目 2 番 7 号 7 セントラルビル 4 階 代表電話 : 03-5401-3851 設立日 :2002 年 9 月 10 日 資本金 :8,830 万円 【子会社】 Bee Technologies Corporation ( アメリカ ) Siam Bee Technologies Co.,Ltd. ( タイランド ) デバイスモデリング スパイス・パーク ( スパイスモデル・ライブラリー ) デザインキット デバイスモデリング教材 31Copyright (C) Bee Technologies Inc. 2010 本ドキュメントは予告なき変更をする場合がございます。 ご了承下さい。また、本文中に登場する製品及びサービス の名称は全て関係各社または個人の各国における商標 または登録商標です。本原稿に関するお問い合わせは、 当社にご連絡下さい。
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.