Download presentation
Presentation is loading. Please wait.
Published byAda Oliver Modified over 9 years ago
1
ISAPP 2011 Observations are converging… …to an unexpected universe
2
ISAPP 2011 Classifying the unknown, 1 1. Cosmological constant 2. Dark energy w=const 3. Dark energy w=w(z) 4. quintessence 5. scalar-tensor models 6. coupled quintessence 7. mass varying neutrinos 8. k-essence 9. Chaplygin gas 10. Cardassian 11. quartessence 12. quiessence 13. phantoms 14. f(R) 15. Gauss-Bonnet 16. anisotropic dark energy 17. brane dark energy 18. backreaction 19. void models 20. degravitation 21. TeVeS 22. oops....did I forget your model?
3
ISAPP 2011 Classifying the unknown, 3 a) change the equations i.e. add new matter field (DE) or modify gravity (MG) b) change the symmetries i.e. inhomogeneous non-linear effects, void models, etc Standard cosmology: GR gravitational equations + symmetries
4
ISAPP 2011 L = crossover scale: 5D gravity dominates at low energy/late times/large scales 4D gravity recovered at high energy/early times/small scales 5D Minkowski bulk: infinite volume extra dimension gravity leakage brane Simplest MG (I): DGP (Dvali, Gabadadze, Porrati 2000)
5
ISAPP 2011 f(R) models are simple and self-contained (no need of potentials) easy to produce acceleration (first inflationary model) high-energy corrections to gravity likely to introduce higher- order terms particular case of scalar-tensor and extra-dimensional theory eg higher order corrections The simplest MG in 4D: f(R) Simplest MG (II): f(R)
6
ISAPP 2011 Faces of the same physics Extra-dim. degrees of freedom Higher order gravity Coupled scalar field Scalar-tensor gravity Faces of the same physics
7
ISAPP 2011 Is this already ruled out by local gravity? is a scalar-tensor theory with Brans-Dicke parameter ω=0 or a coupled dark energy model with coupling β=1/2 β λ Adelberger et al. 2005
8
ISAPP 2011 The fourfold way out of local constraints { depend on time depend on space depend on local density depend on species
9
ISAPP 2011 The simplest case In Einstein Frame Turner, Carroll, Capozziello etc. 2003 …a particular case of coupled dark energy
10
ISAPP 2011 R-1/R model : the φ MDE R-1/R model : the φ MDE rad mat field rad mat field MDE today Caution: Plots in the Einstein frame! instead of !! In Jordan frame:
11
ISAPP 2011 Sound horizon in R+R - n model L.A., D. Polarski, S. Tsujikawa, PRL 98, 131302, astro-ph/0603173 in the Matter Era !
12
ISAPP 2011 A recipe to modify gravity Can we find f(R) models that work?
13
ISAPP 2011 c LGC+Cosmology Take for instance the ΛCDM clone Applying the criteria of LGC and background cosmology i.e. ΛCDM to an incredible precision
14
ISAPP 2011 Space-time geometry The most general (linear, scalar) metric at first-order Full metric reconstruction at first order requires 3 functions background perturbations
15
ISAPP 2011 Two free functions At linear order we can write: Poisson equation zero anisotropic stress
16
ISAPP 2011 Two free functions modified Poisson equation non-zero anisotropic stress At linear order we can write:
17
ISAPP 2011 Modified Gravity at the linear level scalar-tensor models standard gravity DGP f(R) Lue et al. 2004; Koyama et al. 2006 Bean et al. 2006 Hu et al. 2006 Tsujikawa 2007 coupled Gauss-Bonnet see L. A., C. Charmousis, S. Davis 2006 Boisseau et al. 2000 Acquaviva et al. 2004 Schimd et al. 2004 L.A., Kunz &Sapone 2007
18
ISAPP 2011 Reconstruction of the metric massive particles respond to Ψ massless particles respond to Φ-Ψ
19
ISAPP 2011 Reality check Matter power spectrum Galaxy power spectrum in redshift space Density fluctuation in space θ
20
ISAPP 2011 Peculiar velocities. r = v/H 0
21
ISAPP 2011 Peculiar velocities redshift distortion parameter Kaiser 1987
22
ISAPP 2011 Observer Dark matter halos Background sources Radial distances depend on geometry of Universe Weak lensing Foreground mass distribution depends on growth/distribution of structure
23
ISAPP 2011 The Euclid theorem We can measure 3 combinations and we have 1 theoretical relation… Observables: Conservation equations: Theorem: lensing+galaxy clustering allows to measure all (total matter) perturbation variables at first order without assuming any specific gravity theory 4 unknown functions:
24
ISAPP 2011 The Euclid theorem From these we can derive the deviations from Einstein’s gravity:
25
Euclid Surveys ‣ Simultaneous (i) visible imaging (ii) NIR photometry (iii) NIR spectroscopy ‣ 20,000 square degrees ‣ 100 million redshifts, 2 billion images ‣ Median redshift z = 1 ‣ PSF FWHM ~0.18’’ ‣ Final ESA selection (launch 2017) ‣ 500 peoples, 10 countries Euclid in a nutshell Euclid satellite
26
Bertinoro 2011 Real-time cosmology
27
ISAPP 2011 One null cone time comoving dist.
28
ISAPP 2011 One null cone VOID time com. dist. One null cone
29
ISAPP 2011 Cosmic Degeneracy 3 void model Garcia-Bellido & Haugbolle 2008 Tomita 2001 Celerier 2001 Alnes & Amarzguioi 2006,07 Bassett et al. 07 Clifton et al. 08 Notari et al. 2005-08 Marra et al. 08 Garcia-Bellido & Haugbolle 2008
30
ISAPP 2011 Two null cones are better than one! VOID time com. dist. Mashhoon & Partovi 1985 Uzan, Clarkson & Ellis 2007 Quartin, Quercellini, L.A. 2009
31
ISAPP 2011 Sandage 1962
32
ISAPP 2011 Loeb 1998
33
ISAPP 2011 The Sandage effect Corasaniti, Huterer, Melchiorri 2007 Balbi & Quercellini 2007
34
ISAPP 2011 EELT
35
ISAPP 2011 2010 CODEX at EELT today......ten years later
36
ISAPP 2011 CODEX at EELT Liske et al. 2008 large colleting area high resolution spetrographs stable, low-peculiar motion targets: Lyman-alpha lines
37
ISAPP 2011 Two null cones are better than one! VOID time com. dist. Two null cones are better than one! M. Quartin & L. A. 2009 5yrs 10yrs 15yrs
38
ISAPP 2011 LTB void model, XXI century Evolution Us Rest of the Universe Ptolemaic system, I century Us Rest of the Universe
39
ISAPP 2011 Quercellini, Quartin & LA, Phys. Rev. Lett. 2009 arXiv 0809.3675 LTB void model Cosmic Parallax astrometric satellites GAIA, SIM, Jasmine etc: 1-100 µas
40
ISAPP 2011 Lemaitre-Tolman-Bondi models Exact solution in matter-dominated universe: Garcia-Bellido & Haugbolle 2008
41
ISAPP 2011 Quercellini, Quartin & LA, arXiv 0809.3675 Garcia-Bellido & Haugbolle 2008
42
ISAPP 2011 Gaia: Complete, Faint, Accurate
43
ISAPP 2011 Quercellini, Quartin & LA, arXiv 0809.3675 Cosmic Parallax
44
ISAPP 2011 Quercellini, Quartin & LA, arXiv 0809.3675 Garcia-Bellido & Haugbolle 2008
45
ISAPP 2011 Quercellini, Quartin & LA, arXiv 0809.3675 Garcia-Bellido & Haugbolle 2008
46
ISAPP 2011 Bianchi I Not only LTB a(t) b(t) c(t)
47
ISAPP 2011 Current limits on anisotropy at z = 1000 at z = 0 in a ΛCDM universe at z = 0 in anisotropic dark energy
48
ISAPP 2011 Anisotropic dark energy Mota & Koivisto 2008, Barrow, Saha, Bruni, Rodrigues and many others.. C. Quercellini, P. Cabella, L.A., M. Quartin, A. Balbi 2009
49
ISAPP 2011 Future of Dark Energy research Move from background to perturbations Test for gravity/new physics at large scales New full sky surveys at redshift beyond unity Find new observables: eg real-time cosmology
50
ISAPP 2011 Peculiar Acceleration The PA is a direct probe of the gravitational potential: it does not assume virialization or hydrostatic equilibrium.
51
ISAPP 2011 Peculiar Acceleration Mass Andromeda 20 kpc Virgo 0.55 Mpc Coma 0.29 Mpc
52
ISAPP 2011 Peculiar Acceleration L.A., A. Balbi, C. Quercellini, astro-ph arXiv/0708.1132 Phys.Lett.B660:81,2008 different lines of sight
53
ISAPP 2011 local versus global Cluster Mass LCDM redshift drift pec. acc.
54
ISAPP 2011 Peculiar acceleration in the Galaxy Can we use the peculiar acceleration to discriminate among competing gravity theories ? Steps: –We model the galaxy as a disc+CDM halo and derive the peculiar acceleration signal –We model the galaxy as a disc in modified gravity (MOND) –We analyse the different morphology of the signal in the Milky way
55
ISAPP 2011 spiral galaxy: Newton Disc: Kuzmin potential, CDM halo: logarithmic The total line of sight acceleration : test particle outside the disc, where the presence/absence of a CDM halo is more influent. C. Quercellini, L.A., A. Balbi 2008 arXiv:0807.3237
56
ISAPP 2011 spiral galaxy: MOND Beckenstein-Milgrom modified Poisson equation For configurations with spherical, cylindrical or plane symmetry Assuming and solving for
57
ISAPP 2011 spiral galaxy: MOND peculiar acceleration in MOND:
58
ISAPP 2011 Most accelerated globular clusters
59
ISAPP 2011 Newton vs. MOND
60
ISAPP 2011 Proper Acceleration The PropAcc could be seen by averaging over many stars in open and globular clusters
61
ISAPP 2011 Cambridge UP
62
ISAPP 2011 !!! COMING SOON !!! New full Professorship in Heidelberg in theoretical astroparticle physics for inquiries, write to l.amendola@thphys.uni-heidelberg.de t.plehn@thphys.uni-heidelberg.de
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.