Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Chap 7. Indexing. 2 Chapter Objectives(1)  Introduce concepts of indexing that have broad applications in the design of file systems  Introduce the.

Similar presentations


Presentation on theme: "1 Chap 7. Indexing. 2 Chapter Objectives(1)  Introduce concepts of indexing that have broad applications in the design of file systems  Introduce the."— Presentation transcript:

1 1 Chap 7. Indexing

2 2 Chapter Objectives(1)  Introduce concepts of indexing that have broad applications in the design of file systems  Introduce the use of a simple linear index to provide rapid access to records in an entry- sequenced, variable-length record file  Investigate the implementation of the use of indexes for file maintenance  Introduce the template features of C++ for object I/O  Describe the object-oriented approach to indexed sequential files

3 3 Chapter Objectives(2)  Describe the use of indexes to provide access to records by more than one key  Introduce the idea of an inverted list, illustrating Boolean operations on lists  Discuss of when to bind an index key to an address in the data file  Introduce and investigate the implications of self-indexing files

4 4 Contents(1) 7.1 What is an Index? 7.2 A Simple Index for Entry-Sequenced Files 7.3 Using Template Classes in C++ for Object I/O 7.4 Object-Oriented Support for Indexed, Entry- Sequenced Files of Data Objects 7.5 Indexes That Are Too Large to Hold in Memory

5 5 Contents(2) 7.6 Indexing to Provide Access by Multiple Keys 7.7 Retrieval Using Combinations of Secondary Keys 7.8 Improving the Secondary Index Structure: Inverted Lists 7.9 Selective Indexes 7.10 Binding

6 6 Overview: Index(1)  Index: a data structure which associates given key values with corresponding record numbers  It is usually physically separate from the file (unlike for indexed sequential files tight binding).  Linear indexes (like indexes found at the back of books) Index records are ordered by key value as in an ordered relative file Best algorithm for finding a record with a specific key value is binary search Addition requires reorganization

7 7 Overview: Index(2) k1k2k4k5k7k9 k1k2k4k5k7k9 AAAZZZCCCXXXEEEFFF Index File Data File

8 8 Overview: Index(3)  Tree Indexes (like those of indexed sequential files) Hierarchical in that each level Beginning with the root level, points to the next record Leaves POINTs only the data file  Indexed Sequential File  Binary Tree Index  AVL Tree Index  B+ tree Index

9 9 Roles of Index?  Index: keys and reference fields  Fast Random Accesses  Uniform Access Speed  Allow users to impose order on a file without actually rearranging the file  Provide multiple access paths to a file  Give user keyed access to variable-length record files

10 10 A Simple Index(1) u Datafile u entry-sequenced, variable-length record u primary key : unique for each entry in a file u Search a file with key (popular need) u cannot use binary search in a variable-length record file(can’t know where the middle record) u construct an index object for the file u index object : key field + byte-offset field

11 11 A Simple Index (2) ANG3795 167 COL31809 353 COL38358 211 DG18807 256 FF245 442 LON2312 32 MER75016 300 RCA2626 77 WAR23699 132 DG139201 396 LON|2312|Romeo and Juliet|Prokofiev... RCA|2626|Quarter in C Sharp Minor... WAR|23699|Touchstone|Corea... ANG|3795|Sympony No. 9|Beethoven... COL|38358|Nebeaska|Springsteen... DG|18807|Symphony No. 9|Beethoven... MER|75016|Coq d'or Suite|Rimsky... COL|31809|Symphony No. 9|Dvorak... DG|139201|Violin Concerto|Beethoven... FF|245|Good News|Sweet Honey In The... 32 77 132 167 211 256 300 353 396 442 Datafile Actual data record Address of record Reference field Key Indexfile

12 12 A Simple Index (3)  Index file: fixed-size record, sorted  Datafile: not sorted because it is entry sequenced  Record addition is quick (faster than a sorted file)  Can keep the index in memory find record quickly with index file than with a sorted one  Class TextIndex encapsulates the index data and index operations Key Reference field

13 Let’s See Figure 7.4 Class TextIndex{ public: TextIndex(int maxKeys = 100, int unique = 1); int Insert(const char*ckey, int recAddr); //add to index int Remove(const char* key); //remove key from index int Search(const char* key) const; //search for key, return recAddr void Print (ostream &) const; protected: int MaxKeys; // maximum num of entries int NumKeys;// actual num of entries char **Keys; // array of key values int* RecAddrs; // array of record references int Find (const chat* key) const; int Init (int maxKeys, int unique); int Unique;// if true --> each key must be unique }

14 TextIndex::TextIndex TextIndex:: TextIndex (int maxKeys, int unique) : NumKeys (0), Keys(0), RecAddrs(0) {Init (maxKeys, unique);} TextIndex :: ~TextIndex () {delete Keys; delete RecAddrs;}

15 TextIndex::Init int TextIndex :: Init (int maxKeys, int unique) { Unique = unique != 0; if (maxKeys <= 0) { MaxKeys = 0; return 0; } MaxKeys = maxKeys; Keys = new char *[maxKeys]; RecAddrs = new int [maxKeys]; return 1; }

16 TextIndex::Insert int TextIndex :: Insert (const char * key, int recAddr) { int i; int index = Find (key); if (Unique && index >= 0) return 0; // key already in if (NumKeys == MaxKeys) return 0; //no room for another key for (i = NumKeys-1; i >= 0; i--) { if (strcmp(key, Keys[i])>0) break; // insert into location i+1 Keys[i+1] = Keys[i]; RecAddrs[i+1] = RecAddrs[i]; } Keys[i+1] = strdup(key); RecAddrs[i+1] = recAddr; NumKeys ++; return 1; }

17 TextIndex::Remove int TextIndex :: Remove (const char * key) { int index = Find (key); if (index < 0) return 0; // key not in index for (int i = index; i < NumKeys; i++) { Keys[i] = Keys[i+1]; RecAddrs[i] = RecAddrs[i+1]; } NumKeys --; return 1; }

18 TextIndex::Search int TextIndex :: Search (const char * key) const { int index = Find (key); if (index < 0) return index; return RecAddrs[index]; }

19 TextIndex::Find int TextIndex :: Find (const char * key) const { for (int i = 0; i < NumKeys; i++) if (strcmp(Keys[i], key)==0) return i;// key found else if (strcmp(Keys[i], key)>0) return -1;// not found return -1;// not found }

20 Index Implementation  Page 706~709 G.1 Recording.h G.2 Recording.cpp G.3 Makerec.cpp  Page 710~712 G.4 Textind.h G.5 Textind.cpp

21 IndexRecordingFile int IndexRecordingFile (char * myfile, TextIndex & RecordingIndex) { Recording rec; int recaddr, result; DelimFieldBuffer Buffer; // create a buffer BufferFile RecordingFile(Buffer); result = RecordingFile. Open (myfile,ios::in); if (!result) {cout << "Unable to open file "<<myfile<<endl; return 0; } while (1) // loop until the read fails { recaddr = RecordingFile. Read (); // read next record if (recaddr < 0) break; rec. Unpack (Buffer); RecordingIndex. Insert(rec.Key(), recaddr); cout << recaddr <<'\t'<<rec<<endl; } RecordingIndex. Print (cout); result = RetrieveRecording (rec, "LON2312", RecordingIndex, RecordingFile); cout <<"Found record: "<<rec; }

22 RetrieveRecording int RetrieveRecording (Recording & recording, char * key, TextIndex & RecordingIndex, BufferFile & RecordingFile) // read and unpack the recording, return TRUE if succeeds {int result; cout <<"Retrieve "<<key<<" at recaddr "<<RecordingIndex.Search(key)<<endl; result = RecordingFile. Read (RecordingIndex.Search(key)); cout <<"read result: "<<result<<endl; if (result == -1) return FALSE; result = recording.Unpack (RecordingFile.GetBuffer()); return result; }

23  Template Class RecordFile we want to make the following code possible –Person p; RecordFile pFile; pFile.Read(p); –Recording r; RecordFile rFile; rFile.Read(r); difficult to support files for different record types without having to modify the class Template class which is derived from BufferFile –the actual declarations and calls –RecordFile pFile; pFile.Read(p); –RecordFile rFile; rFile.Read(p); Template Class for I/O Object(1)

24 Template Class for I/O Object(2)  Template Class RecordFile template class RecordFile : public BufferFile{ public: int Read(RecType& record, int recaddr = -1); int Write(const RecType& record, int recaddr = -1); int Append(const RecType& record); RecordFile(IOBuffer& buffer) : BufferFile(buffer) {} }; //The template parameter RecType must have the following methods //int Pack(IOBuffer &); pack record into buffer //int Unpack(IOBuffer &); unpack record from buffer

25  Adding I/O to an existing class RecordFile add methods Pack and Unpack to class Recording create a buffer object to use in the I/O –DelimFieldBuffer Buffer; declare an object of type RecordFile –RecordFile rFile (Buffer);  Declaration and Calls Template Class for I/O Object(3) Recording r1, r2; rFile.Open(“myfile”); rFile.Read(r1); rFile.Write(r2); Directly open a file and read and write objects of class Recording

26 Object-Oriented Approach to I/O  Class IndexedFile add indexed access to the sequential access provided by class RecordFile extends RecordFile with Update, Append and Read method –Update & Append : maintain a primary key index of data file –Read : supports access to object by key  TextIndex, RecordFile ==> IndexedFile  Issues of IndexedFile –how to make a persistent index of a file –how to guarantee that the index is an accurate reflection of the contents of the data file

27 27  Create the original empty index and data files  Load the index file into memory  Rewrite the index file from memory  Add records to the data file and index  Delete records from the data file  Update records in the data file  Update the index to reflect changes in the data file  Retrieve records Basic Operations of IndexedFile(1)

28 28 Basic Operations of TextIndexedFile (1)  Creating the files initially empty files (index file and data file)  created as empty files with header records implementation ( makeind.cpp in Appendix G )  Create method in class BufferFile  Loading the index into memory loading/storing objects are supported in the IOBuffer classes need to choose a particular buffer class to use for an index file ( tindbuff.cpp in Appendix G ) –define class TextIndexBuffer as a derived class of FixedFieldBuffer to support reading and writing of index objects

29 29  Rewriting the index file from memory part of the Close operation on an IndexedFile write back index object to the index file should protect the index when failure write changes when out-of-date(use status flag) Implementation –Rewind and Write operations of class BufferFile  Record Addition Basic Operations of TextIndexedFile(2) Add an entry to the index Requires rearrangement if in memory, no file access using TextIndex.Insert Add a new record to data file using RecordFile ::Write +

30 30  Record Deletion data file: the records need not be moved index: delete entry really or just mark it –using TextIndex::Delete  Record Updating (2 categories) ¶the update changes the value of the key field –delete/add approach –reorder both the index and the data file ·the update does not affect the key field –no rearrangement of the index file –may need to reconstruct the data file Basic Operations of TextIndexedFile(3)

31 Class TextIndexedFile(1)  Members methods – Create, Open, Close, Read (sequential & indexed), Append, and Update operations protected members –ensure the correlation between the index in memory (Index), the index file (IndexFile), and the data file (DataFile) char* key() –the template parameter RecType must have the key method –used to extract the key value from the record

32 Class TextIndexedFile(2) Template class TextIndexedFile { public: int Read(RecType& record); // read next record int Read(char* key, RecType& record) // read by key int Append(const RecType& record); int Update(char* oldKey, const RecType& record); int Create(char* name, int mode=ios::in|los::out); int Open(char* name, int mode=ios::in|los::out); int Close(); TextIndexedFile(IOBuffer & buffer, int keySize, int maxKeys=100); ~TextIndexedFile(); // close and delete protected: TextIndex Index; BufferFile IndexFile; TextIndexBuffer IndexBuffer; RecordFile DataFile; char * FileName; // base file name for file int SetFileName(char* fName, char*& dFileName, char*&IdxFName); };

33 TextIndexedFile 생성자 / 소멸자 template TextIndexedFile ::TextIndexedFile (IOBuffer & buffer, int keySize, int maxKeys) : DataFile(buffer), Index (maxKeys), IndexBuffer(keySize, maxKeys), IndexFile(IndexBuffer) { FileName = 0; } template TextIndexedFile ::~TextIndexedFile (){ Close(); }

34 TextIndexedFile::Create int TextIndexedFile ::Create (char * fileName, int mode) // use fileName.dat and fileName.ind {int result; char * dataFileName, * indexFileName; result = SetFileName (fileName, dataFileName, indexFileName); cout <<"file names "<<dataFileName<<" "<<indexFileName<<endl; if (result == -1) return 0; result = DataFile.Create (dataFileName, mode); if (!result){ FileName = 0; // remove connection return 0; } result = IndexFile.Create (indexFileName, ios::out|ios::in); if (!result){ DataFile. Close(); // close the data file FileName = 0; // remove connection return 0; } return 1; }

35 TextIndexedFile::Open template int TextIndexedFile ::Open (char * fileName, int mode) // open data and index file and read index file {int result; char * dataFileName, * indexFileName; result = SetFileName (fileName, dataFileName, indexFileName); if (!result) return 0; // open files result = DataFile.Open (dataFileName, mode); if (!result) { FileName = 0; return 0; } result = IndexFile.Open (indexFileName, ios::out); if (!result) { DataFile. Close(); FileName = 0; return 0; } // read index into memory result = IndexFile. Read (); if (result != -1) {result = IndexBuffer. Unpack (Index);if (result != -1) return 1; } DataFile.Close(); IndexFile.Close(); FileName = 0; return 0; }

36 TextIndexedFile::Read template int TextIndexedFile ::Read (RecType & record) {return result = DataFile. Read (record, -1);} template int TextIndexedFile ::Read (char * key, RecType & record) { int ref = Index.Search(key); if (ref < 0) return -1; int result = DataFile. Read (record, ref); return result; }

37 TextIndexedFile::Append template int TextIndexedFile ::Append (const RecType & record) { char * key = record.Key(); int ref = Index.Search(key); if (ref != -1) // key already in file return -1; ref = DataFile. Append(record); int result = Index. Insert (key, ref); return ref; }

38 TextIndexedFile::Close template int TextIndexedFile ::Close () {int result; if (!FileName) return 0; // already closed! DataFile. Close(); IndexFile. Rewind(); IndexBuffer.Pack (Index); result = IndexFile. Write (); cout <<"result of index write: "<<result<<endl; IndexFile. Close (); FileName = 0; return 1; }

39 TextIndexBuffer class TextIndexBuffer: public FixedFieldBuffer {public: TextIndexBuffer(int keySize, int maxKeys = 100, int extraFields = 0, int extraSize=0); // extraSize is included to allow derived classes to extend // the buffer with extra fields. // Required because the buffer size is exact. int Pack (const TextIndex &); int Unpack (TextIndex &); void Print (ostream &) const; protected: int MaxKeys; int KeySize; char * Dummy; // space for dummy in pack and unpack };

40 TextIndexBuffer::TextIndexBuffer TextIndexBuffer::TextIndexBuffer (int keySize, int maxKeys, int extraFields, int extraSpace) : FixedFieldBuffer (1+2*maxKeys+extraFields, sizeof(int)+maxKeys*keySize+maxKeys*sizeof(int) + extraSpace) // buffer fields consist of numKeys, actual number of keys // Keys [maxKeys] key fields size = maxKeys * keySize // RecAddrs [maxKeys] record address fields size = maxKeys*sizeof(int) { MaxKeys = maxKeys; KeySize = keySize; AddField (sizeof(int)); for (int i = 0; i < maxKeys; i++) { AddField (KeySize); AddField (sizeof(int)); } Dummy = new char[keySize+1]; }

41 TextIndexBuffer::Pack int TextIndexBuffer::Pack (const TextIndex & index) { int result; Clear (); result = FixedFieldBuffer::Pack (&index.NumKeys); for (int i = 0; i < index.NumKeys; i++) {// note only pack the actual keys and recaddrs result = result && FixedFieldBuffer::Pack (index.Keys[i]); result = result && FixedFieldBuffer::Pack (&index.RecAddrs[i]); } for (int j = 0; j<index.MaxKeys-index.NumKeys; j++) {// pack dummy values for other fields result = result && FixedFieldBuffer::Pack (Dummy); } return result; }

42 TextIndexBuffer::Unpack int TextIndexBuffer::Unpack(TextIndex & index) { int result; result = FixedFieldBuffer::Unpack (&index.NumKeys); for (int i = 0; i < index.NumKeys; i++) {// note only pack the actual keys and recaddrs index.Keys[i] = new char[KeySize]; // just to be safe result = result && FixedFieldBuffer::Unpack (index.Keys[i]); result = result && FixedFieldBuffer::Unpack (&index.RecAddrs[i]); } for (int j = 0; j<index.MaxKeys-index.NumKeys; j++) {// pack dummy values for other fields result = result && FixedFieldBuffer::Unpack (Dummy); } return result; }

43 IndexRecordingFile int IndexRecordingFile (char * myfile,TextIndexedFile & indexFile) {Recording rec; int recaddr, result; DelimFieldBuffer Buffer; // create a buffer BufferFile RecFile(Buffer); result = RecFile. Open (myfile,ios::in); if (!result) {cout << "Unable to open file "<<myfile<<endl; return 0; } while (1) // loop until the read fails {recaddr = RecFile. Read (); // read next record if (recaddr < 0) break; rec. Unpack (Buffer); indexFile. Append(rec); } Recording rec1; result = indexFile.Read ("LON2312", rec1); cout <<"Found record: "<<rec; }

44 Enhancements to TextIndexedFile(1)  Support other types of keys Restriction: the key type is restricted to string (char *) Relaxation: support a template class SimpleIndex with parameter for key type  Support data object class hierarchies Restriction: every object must be of the same type in RecordFile Relaxation: the type hierarchy supports virtual pack methods

45 Enhancements to TextIndexedFile(2)  Support multirecord index files Restriction: the entire index fit in a single record Relaxation: add protected method Insert, Delete, and Search to manipulate the arrays of index objects  Active optimization of operations Obvious: the most obvious optimization is to use binary search in the Find method Active: add a flag to the index object to avoid writing the index record back to the index file when it has not been changed

46 Where are we going?  Plain Stream File  Persistency ==> Buffer support ==> BufferFile Deriving BufferFile using various other classes  Random Access ==> Index support => IndexedFile : Deriving TextIndexedFile using RecordFile and TextIndex

47 47 Too Large Index(1)  On secondary storage (large linear index)  Disadvantages binary searching of the index requires several seeks(slower than a sorted file) index rearrangement requires shifting or sorting records on second storage  Alternatives (to be considered later) hashed organization tree-structured index (e.g. B-tree)

48 48 Too Large Index (2)  Advantages over the use of a data file sorted by key even if the index is on the secondary storage can use a binary search sorting and maintaining the index is less expensive than doing the data file can rearrange the keys without moving the data records if there are pinned records

49 49 Index by Multiple Keys(1)  DB-Schema = ( ID-No, Title, Composer, Artist, Label)  Find the record with ID-NO “COL38358” (primary key - ID-No)  Find all the recordings of “Beethoven” (2ndary key - composer)  Find all the recordings titled “Violin Concerto” (2ndary key - title)

50 50 Index by Multiple Keys(2)  Most people don’t want to search only by primary key  Secondary Key can be duplicated Figure -->  Secondary Key Index secondary key --> consult one additional index (primary key index) BEETHOVEN DG18807

51 51 Secondary Index:Basic Operations(1)  Record Addition similar to the case of adding to primary index secondary index is stored in canonical form –fixed length (so it can be truncated) –original name can be obtained from the data file can contain duplicate keys local ordering in the same key group

52 52 Secondary Index:Basic Operations (2)  Record Deletion (2 cases) ¶Secondary index references directly record –delete both primary index and secondary index –rearrange both indexes ·Secondary index references primary key –delete only primary index –leave intact the reference to the deleted record –advantage : fast –disadvantage : deleted records take up space

53 53 Secondary Index: Basic Operations (3)  Record Updating primary key index serves as a kind of protective buffer ¶Secondary index references directly record – update all files containing record’s location ·Secondary index references primary key (1) –affect secondary index only when either primary or secondary key is changed Continued.

54 54 Secondary Index: Basic Operations (4) ·Secondary index references primary key(2) Àwhen changes the secondary key –rearrange the secondary key index Áwhen changes the primary key –update all reference field –may require reordering the secondary index Âwhen confined to other fields –do not affect the secondary key index

55 55 Retrieval of Records  Types primary key access secondary key access combination of above  Combination of keys using secondary key index, it is easy boolean operation (AND, OR)

56 56 Inverted Lists(1)  Inverted List a secondary key leads to a set of one or more primary keys  Disadvantages of 2nd-ary index structure rearrange when adding repeated entry when duplicating  Solution A: by an array of references  Solution B: by linking the list of references

57 57 Array of References BEETHOVEN ANG3795 DG139201 DG18807 RCA2626 COREA WAR23699 DVORAK COL31809 PROKOFIEV LON2312 RIMSKY-KORSAKOV MER75016 SPRINGSTEEN COL38358 SWEET HONEY IN THE R FF245 Secondary key Set of primary key references Revised composer index * no need to rearrange * limited reference array * internal fragmentation

58 58 Inverted Lists (2)  Guidelines for better solution no reorganization when adding no limitation for duplicate key no internal fragmentation  Solution B: by Linking the list of references  A list of primary key references  secondary key field, relative record number of the first corresponding primary key reference PROKOFIEV ANG36193 LON2312

59 59 Linking List of References (1) BEETHOVEN COREA PROKOFIEV RIMSKY-KORSAKOV SPINGSTEEN SWEET HONEY IN THE R DVORAK 3 2 7 10 6 4 9 LON2312 RCA2626 ANG23699 COL38358 DG18807 MER75016 COL31809 DG139201 ANG36193 WAR23699 8 1 5 0 0 1 2 3 4 5 6 7 8 9 FF245 Secondary Index file Label ID List file Improved revision of the composer index 0 1 2 3 4 5 6 10

60 60 Linking List of References (2)  The primary key references in a separate, entry-sequenced file  Advantages rearranges only when secondary key changes rearrangement is quick less penalty associated with keeping the secondary index file on secondary storage (less need for sorting) Label ID List file not need to be sorted reusing the space of deleted record is easy

61 61 Linking List of References (3)  Disadvantage same secondary key references may not be physically grouped –lack of locality –could involve a large amount of seeking –solution: reside in memory –same Label ID list can hold the lists of a number of secondary index files –if too large in memory, can load only a part of it

62 62 Selective Indexes  Selective Index: Index on a subset of records  Selective index contains only some part of entire index provide a selective view useful when contents of a file fall into several categories –e.g. 20 < Age < 30 and $1000 < Salary

63 63 Index Binding(1)  When to bind the key indexes to the physical address of its associated record? ¶File construction time binding (Tight, in-the-data binding) tight binding & faster access the case of primary key when secondary key is bound to that time –simpler and faster retrieval –reorganization of the data file results in modifications of all bound index files

64 64 Index Binding (2) ·Postpone binding until a record is actually retrieved (Retrieval-time binding) minimal reorganization & safe approach mostly for secondary key  Tight, in-the-data binding is good when static, little or no changes rapid performance during retrieval mass-produced, read-only optical disk

65 65 Let’s Review (1) 7.1 What is an Index? 7.2 A Simple Index for Entry-Sequenced Files 7.3 Using Template Classes in C++ for Object I/O 7.4 Object-Oriented Support for Indexed, Entry- Sequenced Files of Data Objects 7.5 Indexes That Are Too Large to Hold in Memory

66 66 Let’s Review(2) 7.6 Indexing to Provide Access by Multiple Keys 7.7 Retrieval Using Combinations of Secondary Keys 7.8 Improving the Secondary Index Structure: Inverted Lists 7.9 Selective Indexes 7.10 Binding


Download ppt "1 Chap 7. Indexing. 2 Chapter Objectives(1)  Introduce concepts of indexing that have broad applications in the design of file systems  Introduce the."

Similar presentations


Ads by Google